File size: 7,187 Bytes
1cc6224
 
 
 
797986c
 
 
1cc6224
 
 
 
 
 
 
 
7a1847a
ff9d83f
 
 
1cc6224
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
730f8b5
1cc6224
 
acecd06
ff9d83f
 
 
 
1cc6224
 
 
e8c34d9
1cc6224
 
 
 
 
ff9d83f
 
 
 
 
 
 
 
 
1cc6224
 
 
 
 
 
 
 
 
b86e0e2
1cc6224
 
 
 
 
 
 
 
b1011ff
1cc6224
e67678f
1cc6224
 
b1011ff
4a90cb6
b1011ff
61f614e
cc42f02
3ee5f71
b1011ff
61f614e
b1011ff
1cc6224
a3245bb
1ed781c
931d7c9
 
 
c443b0c
931d7c9
 
 
c443b0c
931d7c9
 
ec572ac
1cc6224
 
a3245bb
16568ec
1cc6224
b8cb126
1cc6224
 
b946da1
dd68fbf
 
 
70d3f40
dd68fbf
 
1cc6224
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import gradio as gr
from sentence_transformers import SentenceTransformer, util
import openai
import os
import matplotlib.pyplot as plt
from matplotlib import font_manager

os.environ["TOKENIZERS_PARALLELISM"] = "false"

# Initialize paths and model identifiers for easy configuration and maintenance
filename = "output_topic_details.txt"  # Path to the file storing chess-specific details
retrieval_model_name = 'output/sentence-transformer-finetuned/'

openai.api_key = os.environ["OPENAI_API_KEY"]

system_message = "You are a game chatbot specialized in recommending video games based on genre, what they are about, and price."
# Initial system message to set the behavior of the assistant
messages = [{"role": "system", "content": system_message}]

# Attempt to load the necessary models and provide feedback on success or failure
try:
    retrieval_model = SentenceTransformer(retrieval_model_name)
    print("Models loaded successfully.")
except Exception as e:
    print(f"Failed to load models: {e}")

def load_and_preprocess_text(filename):
    """
    Load and preprocess text from a file, removing empty lines and stripping whitespace.
    """
    try:
        with open(filename, 'r', encoding='utf-8') as file:
            segments = [line.strip() for line in file if line.strip()]
        print("Text loaded and preprocessed successfully.")
        return segments
    except Exception as e:
        print(f"Failed to load or preprocess text: {e}")
        return []

segments = load_and_preprocess_text(filename)

def find_relevant_segment(user_query, segments):
    """
    Find the most relevant text segment for a user's query using cosine similarity among sentence embeddings.
    This version finds the best match based on the content of the query.
    """
    try:
        # Lowercase the query for better matching
        lower_query = user_query.lower()
        
        # Encode the query and the segments
        query_embedding = retrieval_model.encode(lower_query)
        segment_embeddings = retrieval_model.encode(segments)
        
        # Compute cosine similarities between the query and the segments
        similarities = util.pytorch_cos_sim(query_embedding, segment_embeddings)[0]
        
        # Find the index of the most similar segment
        best_idx = similarities.argmax()
        
        # Return the most relevant segment
        return segments[best_idx]
    except Exception as e:
        print(f"Error in finding relevant segment: {e}")
        return ""

def generate_response(user_query, relevant_segment):
    """
    Generate a response emphasizing the bot's capability in providing video game reccomendations.
    """
    try:
        user_message = f"Here's the information on this game: {relevant_segment}"

        # Append user's message to messages list
        messages.append({"role": "user", "content": user_message})
        
        response = openai.ChatCompletion.create(
            model="gpt-3.5-turbo",
            messages=messages,
            max_tokens=400,
            temperature=0.2,
            top_p=1,
            frequency_penalty=0,
            presence_penalty=0
        )
        
        # Extract the response text
        output_text = response['choices'][0]['message']['content'].strip()
        
        # Append assistant's message to messages list for context
        messages.append({"role": "assistant", "content": output_text})
        
        return output_text
        
    except Exception as e:
        print(f"Error in generating response: {e}")
        return f"Error in generating response: {e}"

def query_model(question):
    """
    Process a question, find relevant information, and generate a response.
    """
    if question == "":
        return "Welcome to Plai! Ask me for any game recommendations."
    relevant_segment = find_relevant_segment(question, segments)
    if not relevant_segment:
        return "Could not find specific information. Please refine your question."
    response = generate_response(question, relevant_segment)
    return response

# Define the welcome message and specific topics the chatbot can provide information about
welcome_message = """
<span style="color:#FFF4EA; font-size:90px; font-weight:bold;">˚˖𓍢ִ໋🌷͙֒✧ Welcome to Plai!͙֒˚.🎀༘⋆ .</span>

<span style="color:#d89b9b; font-size:40px; font-weight:light;">🫧𓍢ִ໋🍬˚˖𓍢ִ໋🦢˚Your AI-Driven Assistant for all Videogame Related Queries. Created by Perennial, Jiya, and Ly-Ly of the 2024 Kode With Klossy San Francisco Camp.</span>
"""
topics = """
<span style="color:#AB4E68; font-size:30px; font-weight:bold;">𓍢ִ໋🌷͙֒₊˚*ੈ🎀⸝⸝🍓⋆Feel Free to ask for Recommendations Based on:</span>

<span style="color:#A25F9D; font-size:20px; font-weight:light;">୭ 🧷 ✧ ˚. 🎀 Genre</span>

<span style="color:#A25F9D; font-size:20px; font-weight:light;">₊˚˖𓍢ִ🍓✧˚.🎀༘⋆゚Affordability</span>

<span style="color:#A25F9D; font-size:20px; font-weight:light;">🍰♡ ༘*.゚🧸🎀 Feeling</span>

<span style="color:#A25F9D; font-size:20px; font-weight:light;">˚₊‧꒰ა ꣑ৎ ໒꒱ ‧₊˚</span>
"""
theme = gr.themes.Base().set(
    background_fill_primary='#FAB9CB',  # Light pink background
    background_fill_primary_dark='#AB4E68',  # Light pink background
    background_fill_secondary='#AB4E68',  # Light orange background
    background_fill_secondary_dark='#AB4E68',  # Dark orange background
    border_color_accent='#FAB9CB',  # Accent border color
    border_color_accent_dark='#AB4E68',  # Dark accent border color
    border_color_accent_subdued='#AB4E68',  # Subdued accent border color
    border_color_primary='#AB4E68',  # Primary border color
    block_border_color='#FAB9CB',  # Block border color
    button_primary_background_fill='#AB4E68',  # Primary button background color
    button_primary_background_fill_dark='#AB4E68',  # Dark primary button background color
)

# Setup the Gradio Blocks interface with custom layout components
with gr.Blocks(theme=theme) as demo:
    gr.Image("Video Game Banner.gif", show_label = False, show_share_button = False, show_download_button = False)
    gr.Markdown(welcome_message)  # Display the formatted welcome message
    with gr.Row(): 
        with gr.Column():
            gr.Markdown(topics)  # Show the topics on the left side
            gr.Image("Image.png", show_label = False, show_share_button = False, show_download_button = False, height=500, width=500 )
        with gr.Row():
            with gr.Column():
                question = gr.Textbox(label="ׁ ׁ ꥓ ݄ ׁ 𖦹🎀 ׅ 𓈒Your Question⋆𐙚₊˚⊹♡", placeholder="༘⋆🌷🫧What do you Want to ask About?💭₊˚ෆ")
                answer = gr.Textbox(label="˚ ༘˚Plai Responseೀ⋆。", placeholder="ೀ🍨‧° 🎀⊹°。♡Plai will Respond Here...", interactive=False, lines=10)
                submit_button = gr.Button("˚₊‧꒰აSubmit໒꒱ ‧₊˚")
                submit_button.click(fn=query_model, inputs=question, outputs=answer)
    

# Launch the Gradio app to allow user interaction
demo.launch(share=True)