File size: 8,701 Bytes
1cc6224 797986c bcb5b16 797986c 1cc6224 a81d527 ff9d83f 1cc6224 730f8b5 1cc6224 acecd06 ff9d83f 1cc6224 d9a9aa2 1cc6224 e8c34d9 45e7f26 1cc6224 45e7f26 1cc6224 ff9d83f 1cc6224 b86e0e2 1cc6224 3b53f9b 34a9e4a 3b53f9b 5ceba3b 3b53f9b 1cc6224 b1011ff 1cc6224 1ac308e d9a9aa2 ee88904 d9a9aa2 cbf9afe 45e7f26 ee88904 45e7f26 4a90cb6 45e7f26 a77db0b 61f614e cbf9afe bb79658 a77db0b 3ee5f71 2fe2163 61f614e a77db0b bb79658 a77db0b 1cc6224 a3245bb 1ed781c 931d7c9 c443b0c 931d7c9 c443b0c 931d7c9 ec572ac 1cc6224 a3245bb 16568ec 1cc6224 b8cb126 1cc6224 45e7f26 2c42b2e e97fad6 dd68fbf a77db0b 2754d64 5ba325c a77db0b 9595028 1cc6224 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 |
import gradio as gr
from sentence_transformers import SentenceTransformer, util
import openai
import os
import matplotlib.pyplot as plt
from matplotlib import font_manager
from PIL import Image
os.environ["TOKENIZERS_PARALLELISM"] = "false"
# Initialize paths and model identifiers for easy configuration and maintenance
filename = "output_topic_details.txt" # Path to the file storing chess-specific details
retrieval_model_name = 'output/sentence-transformer-finetuned/'
openai.api_key = os.environ["OPENAI_API_KEY"]
system_message = "You are a video game recommedation chatbot. You respond to requests in a friendly manner, with the name, price, release date, description and website of a game without bolding and bullet points"
# Initial system message to set the behavior of the assistant
messages = [{"role": "system", "content": system_message}]
# Attempt to load the necessary models and provide feedback on success or failure
try:
retrieval_model = SentenceTransformer(retrieval_model_name)
print("Models loaded successfully.")
except Exception as e:
print(f"Failed to load models: {e}")
def load_and_preprocess_text(filename):
"""
Load and preprocess text from a file, removing empty lines and stripping whitespace.
"""
try:
with open(filename, 'r', encoding='utf-8') as file:
segments = [line.strip() for line in file if line.strip()]
print("Text loaded and preprocessed successfully.")
return segments
except Exception as e:
print(f"Failed to load or preprocess text: {e}")
return []
segments = load_and_preprocess_text(filename)
def find_relevant_segment(user_query, segments):
"""
Find the most relevant text segment for a user's query using cosine similarity among sentence embeddings.
This version finds the best match based on the content of the query.
"""
try:
# Lowercase the query for better matching
lower_query = user_query.lower()
# Encode the query and the segments
query_embedding = retrieval_model.encode(lower_query)
segment_embeddings = retrieval_model.encode(segments)
# Compute cosine similarities between the query and the segments
similarities = util.pytorch_cos_sim(query_embedding, segment_embeddings)[0]
# Find the index of the most similar segment
best_idx = similarities.argmax()
# Return the most relevant segment
return segments[best_idx]
except Exception as e:
print(f"Error in finding relevant segment: {e}")
return ""
def generate_response(user_query, relevant_segment):
"""
Generate a response emphasizing the bot's capability in providing video game reccomendations.
"""
try:
user_message = f"Here's the information on this game: {relevant_segment}"
# Append user's message to messages list
messages.append({"role": "user", "content": user_message})
response = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=messages,
max_tokens=400,
temperature=0.5,
top_p=1,
frequency_penalty=0.5,
presence_penalty=0.5
)
# Extract the response text
output_text = response['choices'][0]['message']['content'].strip()
# Append assistant's message to messages list for context
messages.append({"role": "assistant", "content": output_text})
return output_text
except Exception as e:
print(f"Error in generating response: {e}")
return f"Error in generating response: {e}"
def query_model(question):
"""
Process a question, find relevant information, and generate a response.
"""
if question == "":
return "Welcome to Plai! Ask me for any game recommendations."
relevant_segment = find_relevant_segment(question, segments)
if not relevant_segment:
return "Could not find specific information. Please refine your question."
response = generate_response(question, relevant_segment)
image = get_image_for_response(question)
return response, image
IMAGE_DIRECTORY = "Images"
def get_image_for_response(question):
"""
Retrieve an image based on the response text.
"""
# Normalize the response text to create a filename
file_name = question.lower().replace(" ", "_")
image_path = os.path.join(IMAGE_DIRECTORY, file_name + ".jpg")
print(question)
print(image_path)
# Check if the image file exists
if os.path.exists(image_path):
return Image.open(image_path)
else:
# Return a default or placeholder image if the file is not found
default_image_path = os.path.join(IMAGE_DIRECTORY, "Game Aesthetic.jpeg")
return Image.open(default_image_path)
# Define the welcome message and specific topics the chatbot can provide information about
welcome_message = """
<span style="color:#FFF4EA; font-size:90px; font-weight:bold;">˚˖𓍢ִ໋🌷͙֒✧ Welcome to Plai!͙֒˚.🎀༘⋆ .</span>
<span style="color:#fc6c85; font-size:45px; font-weight:bold;">༘˚⋆𐙚。‧𖦹.✧♡˚ৎ୭🩰.𓍢✧˚.💮ִPlai Your Way🌷✩°𓏲🍥⋆.*₊。⋆𖧧.࣪˚⊹₊ᰔ</span>
<span style="color:#F7879A; font-size:40px; font-weight:bold;">🫧𓍢ִ໋🍬Your AI-Driven Assistant for All Videogame Related Queries˚˖𓍢ִ໋🦢</span>
<span style="color:#E75480; font-size:27px; font-weight:bold;">°❀⋆.♡𓍢Created by Perennial, Jiya, and Ly-Ly of the 2024 Kode With Klossy San Francisco Campೃ࿔*˚⊹:・</span>
<span style="color:#AB4E68; font-size:25px; font-weight:bold;">𓍢ִ໋🌷͙֒₊˚*Feel Free to ask for Recommendations Based on the Topics Belowੈ🎀⸝⸝🍓⋆</span>
"""
topics = """
<span style="color:#A25F9D; font-size:20px; font-weight:light;">🎀୭✧Genre🧷˚.₊</span>
<span style="color:#A25F9D; font-size:20px; font-weight:light;">₊˚˖𓍢ִ🍓✧Price˚🎀༘⋆゚</span>
<span style="color:#A25F9D; font-size:20px; font-weight:light;">📍ִ໋🌷͙֒✧Style🎀༘🩷˚.⋆</span>
<span style="color:#A25F9D; font-size:20px; font-weight:light;">🍰🎀♡Feeling*.゚🧸</span>
<span style="color:#A25F9D; font-size:20px; font-weight:light;">₊˚🦢✩Year🎀⊹☁️♡゚</span>
<span style="color:#A25F9D; font-size:20px; font-weight:light;">⋆。‧˚ʚ꣑ৎɞ˚‧。⋆</span>
"""
theme = gr.themes.Base().set(
background_fill_primary='#FAB9CB', # Light pink background
background_fill_primary_dark='#AB4E68', # Light pink background
background_fill_secondary='#AB4E68', # Light orange background
background_fill_secondary_dark='#AB4E68', # Dark orange background
border_color_accent='#FAB9CB', # Accent border color
border_color_accent_dark='#AB4E68', # Dark accent border color
border_color_accent_subdued='#AB4E68', # Subdued accent border color
border_color_primary='#AB4E68', # Primary border color
block_border_color='#FAB9CB', # Block border color
button_primary_background_fill='#AB4E68', # Primary button background color
button_primary_background_fill_dark='#AB4E68', # Dark primary button background color
)
# Setup the Gradio Blocks interface with custom layout components
with gr.Blocks(theme=theme) as demo:
gr.Image("Video Game Banner.gif", show_label = False, show_share_button = False, show_download_button = False)
gr.Markdown(welcome_message) # Display the formatted welcome message
with gr.Row():
with gr.Column():
gr.Markdown(topics)
# Show the topics on the left side
gr.Image("Image 8-1-24 at 2.42 PM.jpeg", show_label = False, show_share_button = False, show_download_button = False, height=294, width=500 )
with gr.Row():
with gr.Column():
question = gr.Textbox(label="ׁ ׁ ꥓ ݄ ׁ 𖦹 ׅ 𓈒Your Question⋆𐙚₊˚⊹♡", placeholder="༘⋆🌷🫧What are You Wondering?💭₊˚ෆ")
answer = gr.Textbox(label="˚ ༘˚Plai's Responseೀ⋆。", placeholder="ೀ🍨‧°Plai Your Way Here🎀⊹°。♡", interactive=False, lines=17)
image_output=gr.Image(label="ꕤ*.゚⋅˚₊‧ Image Outputs Here୨୧ ‧₊˚ ⋅♡ ̆̈")
submit_button = gr.Button("˚₊‧꒰აAsk Away໒꒱ ‧₊˚")
submit_button.click(fn=query_model, inputs=question, outputs=[answer,image_output])
# Launch the Gradio app to allow user interaction
demo.launch(share=True)
|