|
from diffusers import AutoPipelineForText2Image, AutoPipelineForImage2Image |
|
import torch |
|
from diffusers.utils import make_image_grid |
|
|
|
pipeline = AutoPipelineForText2Image.from_pretrained( |
|
"runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16, variant="fp16", use_safetensors=True |
|
) |
|
pipeline.enable_model_cpu_offload() |
|
|
|
pipeline.enable_xformers_memory_efficient_attention() |
|
|
|
text2image = pipeline("Astronaut in a jungle, cold color palette, muted colors, detailed, 8k").images[0] |
|
text2image |
|
|
|
pipeline = AutoPipelineForImage2Image.from_pretrained( |
|
"kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16, use_safetensors=True |
|
) |
|
pipeline.enable_model_cpu_offload() |
|
|
|
pipeline.enable_xformers_memory_efficient_attention() |
|
|
|
image2image = pipeline("Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", image=text2image).images[0] |
|
make_image_grid([text2image, image2image], rows=1, cols=2) |
|
|
|
import torch |
|
from diffusers import AutoPipelineForImage2Image |
|
from diffusers.utils import make_image_grid, load_image |
|
|
|
pipeline = AutoPipelineForImage2Image.from_pretrained( |
|
"runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16, variant="fp16", use_safetensors=True |
|
) |
|
pipeline.enable_model_cpu_offload() |
|
|
|
pipeline.enable_xformers_memory_efficient_attention() |
|
|
|
|
|
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/img2img-init.png" |
|
init_image = load_image(url) |
|
|
|
prompt = "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k" |
|
|
|
|
|
image = pipeline(prompt, image=init_image, output_type="latent").images[0] |
|
|
|
pipeline = AutoPipelineForImage2Image.from_pretrained( |
|
"ogkalu/Comic-Diffusion", torch_dtype=torch.float16 |
|
) |
|
pipeline.enable_model_cpu_offload() |
|
|
|
pipeline.enable_xformers_memory_efficient_attention() |
|
|
|
|
|
image = pipeline("Astronaut in a jungle, charliebo artstyle", image=image, output_type="latent").images[0] |
|
|
|
pipeline = AutoPipelineForImage2Image.from_pretrained( |
|
"kohbanye/pixel-art-style", torch_dtype=torch.float16 |
|
) |
|
pipeline.enable_model_cpu_offload() |
|
|
|
pipeline.enable_xformers_memory_efficient_attention() |
|
|
|
|
|
image = pipeline("Astronaut in a jungle, pixelartstyle", image=image).images[0] |
|
make_image_grid([init_image, image], rows=1, cols=2) |
|
|
|
import torch |
|
from diffusers import AutoPipelineForImage2Image |
|
from diffusers.utils import make_image_grid, load_image |
|
|
|
pipeline = AutoPipelineForImage2Image.from_pretrained( |
|
"runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16, variant="fp16", use_safetensors=True |
|
) |
|
pipeline.enable_model_cpu_offload() |
|
|
|
pipeline.enable_xformers_memory_efficient_attention() |
|
|
|
|
|
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/img2img-init.png" |
|
init_image = load_image(url) |
|
|
|
prompt = "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k" |
|
|
|
|
|
image_1 = pipeline(prompt, image=init_image, output_type="latent").images[0] |
|
|
|
from diffusers import StableDiffusionLatentUpscalePipeline |
|
|
|
upscaler = StableDiffusionLatentUpscalePipeline.from_pretrained( |
|
"stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16, variant="fp16", use_safetensors=True |
|
) |
|
upscaler.enable_model_cpu_offload() |
|
upscaler.enable_xformers_memory_efficient_attention() |
|
|
|
image_2 = upscaler(prompt, image=image_1, output_type="latent").images[0] |
|
|
|
from diffusers import StableDiffusionUpscalePipeline |
|
|
|
super_res = StableDiffusionUpscalePipeline.from_pretrained( |
|
"stabilityai/stable-diffusion-x4-upscaler", torch_dtype=torch.float16, variant="fp16", use_safetensors=True |
|
) |
|
super_res.enable_model_cpu_offload() |
|
super_res.enable_xformers_memory_efficient_attention() |
|
|
|
image_3 = super_res(prompt, image=image_2).images[0] |
|
make_image_grid([init_image, image_3.resize((512, 512))], rows=1, cols=2) |
|
|
|
|