from diffusers import AutoPipelineForText2Image, AutoPipelineForImage2Image import torch from diffusers.utils import make_image_grid pipeline = AutoPipelineForText2Image.from_pretrained( "runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16, variant="fp16", use_safetensors=True ) pipeline.enable_model_cpu_offload() # remove following line if xFormers is not installed or you have PyTorch 2.0 or higher installed pipeline.enable_xformers_memory_efficient_attention() text2image = pipeline("Astronaut in a jungle, cold color palette, muted colors, detailed, 8k").images[0] text2image pipeline = AutoPipelineForImage2Image.from_pretrained( "kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16, use_safetensors=True ) pipeline.enable_model_cpu_offload() # remove following line if xFormers is not installed or you have PyTorch 2.0 or higher installed pipeline.enable_xformers_memory_efficient_attention() image2image = pipeline("Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", image=text2image).images[0] make_image_grid([text2image, image2image], rows=1, cols=2) import torch from diffusers import AutoPipelineForImage2Image from diffusers.utils import make_image_grid, load_image pipeline = AutoPipelineForImage2Image.from_pretrained( "runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16, variant="fp16", use_safetensors=True ) pipeline.enable_model_cpu_offload() # remove following line if xFormers is not installed or you have PyTorch 2.0 or higher installed pipeline.enable_xformers_memory_efficient_attention() # prepare image url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/img2img-init.png" init_image = load_image(url) prompt = "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k" # pass prompt and image to pipeline image = pipeline(prompt, image=init_image, output_type="latent").images[0] pipeline = AutoPipelineForImage2Image.from_pretrained( "ogkalu/Comic-Diffusion", torch_dtype=torch.float16 ) pipeline.enable_model_cpu_offload() # remove following line if xFormers is not installed or you have PyTorch 2.0 or higher installed pipeline.enable_xformers_memory_efficient_attention() # need to include the token "charliebo artstyle" in the prompt to use this checkpoint image = pipeline("Astronaut in a jungle, charliebo artstyle", image=image, output_type="latent").images[0] pipeline = AutoPipelineForImage2Image.from_pretrained( "kohbanye/pixel-art-style", torch_dtype=torch.float16 ) pipeline.enable_model_cpu_offload() # remove following line if xFormers is not installed or you have PyTorch 2.0 or higher installed pipeline.enable_xformers_memory_efficient_attention() # need to include the token "pixelartstyle" in the prompt to use this checkpoint image = pipeline("Astronaut in a jungle, pixelartstyle", image=image).images[0] make_image_grid([init_image, image], rows=1, cols=2) import torch from diffusers import AutoPipelineForImage2Image from diffusers.utils import make_image_grid, load_image pipeline = AutoPipelineForImage2Image.from_pretrained( "runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16, variant="fp16", use_safetensors=True ) pipeline.enable_model_cpu_offload() # remove following line if xFormers is not installed or you have PyTorch 2.0 or higher installed pipeline.enable_xformers_memory_efficient_attention() # prepare image url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/img2img-init.png" init_image = load_image(url) prompt = "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k" # pass prompt and image to pipeline image_1 = pipeline(prompt, image=init_image, output_type="latent").images[0] from diffusers import StableDiffusionLatentUpscalePipeline upscaler = StableDiffusionLatentUpscalePipeline.from_pretrained( "stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16, variant="fp16", use_safetensors=True ) upscaler.enable_model_cpu_offload() upscaler.enable_xformers_memory_efficient_attention() image_2 = upscaler(prompt, image=image_1, output_type="latent").images[0] from diffusers import StableDiffusionUpscalePipeline super_res = StableDiffusionUpscalePipeline.from_pretrained( "stabilityai/stable-diffusion-x4-upscaler", torch_dtype=torch.float16, variant="fp16", use_safetensors=True ) super_res.enable_model_cpu_offload() super_res.enable_xformers_memory_efficient_attention() image_3 = super_res(prompt, image=image_2).images[0] make_image_grid([init_image, image_3.resize((512, 512))], rows=1, cols=2)