File size: 5,903 Bytes
fcdfd72
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
# ------------------------------------------------------------------------
# Copyright (c) 2023-present, PhyscalX. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ------------------------------------------------------------------------
"""Gradio ``ImagePrompter`` component."""

from __future__ import annotations

from typing import Optional, List, TypedDict, Union, Literal

import numpy as np
import gradio
from gradio.data_classes import FileData, GradioModel
from gradio_client.documentation import document, set_documentation_group
from PIL import Image as _Image  # using _ to minimize namespace pollution

set_documentation_group("component")


class PromptData(GradioModel):
    image: FileData
    points: List[List[float]]


class PromptValue(TypedDict):
    image: Optional[Union[np.ndarray, _Image.Image, str]]
    points: Optional[list[list[float]]]

from gradio.events import Dependency

@document()
class ImagePrompter(gradio.Image):
    """Create an image prompter to upload images and process point/box prompts."""

    data_model = PromptData

    def __init__(
        self,
        value: str | _Image.Image | np.ndarray | None = None,
        *,
        height: int | None = None,
        width: int | None = None,
        image_mode: Literal[
            "1", "L", "P", "RGB", "RGBA", "CMYK", "YCbCr", "LAB", "HSV", "I", "F"
        ] = "RGB",
        sources: list[Literal["upload", "clipboard"]] | None = None,
        type: Literal["numpy", "pil", "filepath"] = "numpy",
        label: str | None = None,
        every: float | None = None,
        show_label: bool | None = None,
        show_download_button: bool = True,
        container: bool = True,
        scale: int | None = None,
        min_width: int = 160,
        interactive: bool | None = None,
        visible: bool = True,
        elem_id: str | None = None,
        elem_classes: list[str] | str | None = None,
        render: bool = True,
        show_share_button: bool | None = None,
    ):
        """
        Parameters:
            value: A PIL Image, numpy array, path or URL for the default value. If callable, it will be called set the initial value.
            height: Height of the displayed image in pixels.
            width: Width of the displayed image in pixels.
            image_mode: "RGB" if color, or "L" if black and white. See https://pillow.readthedocs.io/en/stable/handbook/concepts.html.
            sources: List of sources for the image.
            type: The format the image is converted before being passed into the prediction function.
            label: The label for this component.
            every: If `value` is a callable, run the function 'every' number of seconds while the client connection is open.
            show_label: if True, will display label.
            show_download_button: If True, will display button to download image.
            container: If True, will place the component in a container - providing some extra padding around the border.
            scale: relative width compared to adjacent Components in a Row. Should be an integer.
            min_width: minimum pixel width, will wrap if not sufficient screen space to satisfy this value.
            interactive: if True, will allow users to upload and edit an image; if False, can only be used to display images.
            visible: If False, component will be hidden.
            streaming: If True when used in a `live` interface, will automatically stream webcam feed. Only valid is source is 'webcam'.
            elem_id: An optional string that is assigned as the id of this component in the HTML DOM.
            elem_classes: An optional list of strings that are assigned as the classes of this component in the HTML DOM.
            render: If False, component will not render be rendered in the Blocks context.
            mirror_webcam: If True webcam will be mirrored. Default is True.
            show_share_button: If True, show a share icon that allows user to share outputs to Hugging Face Spaces Discussions.
        """
        super(ImagePrompter, self).__init__(
            value=value,
            height=height,
            width=width,
            image_mode=image_mode,
            sources=["upload", "clipboard"] if sources is None else sources,
            type=type,
            label=label,
            every=every,
            show_label=show_label,
            show_download_button=show_download_button,
            container=container,
            scale=scale,
            min_width=min_width,
            interactive=interactive,
            visible=visible,
            elem_id=elem_id,
            elem_classes=elem_classes,
            render=render,
            show_share_button=show_share_button,
        )

    def preprocess(self, x: PromptData) -> PromptValue | None:
        if x is None:
            return x
        im = super().preprocess(x.image)
        return {"image": im, "points": x.points}

    def postprocess(self, y: PromptValue) -> PromptData | None:
        if y is None:
            return None
        image, points = y.get("image", None), y.get("points", [])
        return PromptData(image=super().postprocess(image), points=points)

    def as_example(self, y: PromptValue) -> str | None:
        if y is None:
            return None
        return self.move_resource_to_block_cache(y.get("image", None))