GraspAnything / structures /segmentation_mask.py
Plachta's picture
Upload 50 files
fcdfd72 verified
raw
history blame
10.6 kB
import cv2
import torch
import numpy as np
import pycocotools.mask as mask_utils
# transpose
FLIP_LEFT_RIGHT = 0
FLIP_TOP_BOTTOM = 1
class MaskList(object):
"""
This class is unfinished and not meant for use yet
It is supposed to contain the binary masks for all instances in a list of 2D tensors (H, W)
"""
def __init__(self, masks, size, mode):
assert(isinstance(masks, list))
assert(mode in ['mask', 'rle'])
self.masks = masks
self.size = size # (image_width, image_height)
self.mode = mode
def transpose(self, method):
assert (self.mode == "mask"), "RLE masks cannot be transposed. Please convert them to binary first."
if method not in (FLIP_LEFT_RIGHT, FLIP_TOP_BOTTOM):
raise NotImplementedError(
"Only FLIP_LEFT_RIGHT and FLIP_TOP_BOTTOM implemented"
)
# width, height = self.size
masks = np.array(self.masks)
if masks.ndim == 2:
masks = np.expand_dims(masks, axis=0)
if method == FLIP_LEFT_RIGHT:
masks = np.flip(masks, axis=2)
elif method == FLIP_TOP_BOTTOM:
masks = np.flip(masks, axis=1)
flipped_masks = np.split(masks, masks.shape[0])
flipped_masks = [mask.squeeze(0) for mask in flipped_masks]
return MaskList(flipped_masks, self.size, self.mode)
def resize(self, size, *args, **kwargs):
"""
Resize the binary mask.
:param size: tuple, (image_width, image_height)
:param args:
:param kwargs:
:return:
"""
assert(self.mode == "mask"), "RLE masks cannot be resized. Please convert them to binary first."
cat_mask = np.array(self.masks)
cat_mask = cat_mask.transpose(1, 2, 0)
cat_mask *= 255
cat_mask = cat_mask.astype(np.uint8)
resized_mask = cv2.resize(cat_mask, size)
if resized_mask.ndim == 2:
resized_mask = np.expand_dims(resized_mask, axis=2)
try:
resized_mask = resized_mask.transpose(2, 0, 1)
except ValueError:
print("?")
resized_mask = resized_mask.astype(int)
resized_mask = resized_mask // 255
# # visualize to check mask correctness
# from matplotlib import pyplot as plt
# plt.figure()
# plt.imshow(resized_mask[0]*255, cmap='gray')
# plt.show()
mask_list = np.split(resized_mask, resized_mask.shape[0])
mask_list = [mask.squeeze(0) for mask in mask_list]
return MaskList(mask_list, size, "mask")
def pad(self, size):
"""
pad the binary masks according to the new size. New size must be larger than original size in all dimensions
:param size: New image size, (image_width, image_height)
:return:
"""
assert(size[0] >= self.size[0] and size[1] >= self.size[1]), "New size must be larger than original size in all dimensions"
cat_mask = np.array(self.masks)
if cat_mask.ndim == 2:
cat_mask = np.expand_dims(cat_mask, axis=0)
padded_mask = np.zeros([len(self.masks), size[1], size[0]])
padded_mask[:, :cat_mask.shape[1], :cat_mask.shape[2]] = cat_mask
# # visualize to check mask correctness
# from matplotlib import pyplot as plt
# plt.figure()
# plt.imshow(padded_mask[1]*255, cmap='gray')
# plt.show()
mask_list = np.split(padded_mask, padded_mask.shape[0])
mask_list = [mask.squeeze(0) for mask in mask_list]
return MaskList(mask_list, size, "mask")
def convert(self, mode):
"""
Convert mask from between mode "mask" and mode "rle"
:param mode:
:return:
"""
if mode == self.mode:
return self
elif mode == "rle" and self.mode == "mask":
# use pycocotools to encode binary masks to rle
rle_mask_list = mask_utils.encode(np.asfortranarray(np.array(self.masks).transpose(1, 2, 0).astype(np.uint8)))
return MaskList(rle_mask_list, self.size, "rle")
elif mode == "mask" and self.mode == "rle":
# use pycocotools to decode rle to binary masks
bimasks = mask_utils.decode(self.masks)
mask_list = np.split(bimasks.transpose(2, 0, 1), bimasks.shape[2])
mask_list = [mask.squeeze(0) for mask in mask_list]
return MaskList(mask_list, self.size, "mask")
def bbox(self, bbox_mode="xyxy"):
"""
Generate a bounding box according to the binary mask
:param bbox_mode:
:return:
"""
pass
def __len__(self):
return len(self.masks)
def __repr__(self):
s = self.__class__.__name__ + "("
s += "num_masks={}, ".format(len(self))
s += "image_width={}, ".format(self.size[0])
s += "image_height={}, ".format(self.size[1])
s += "mode={})".format(self.mode)
return s
class Polygons(object):
"""
This class holds a set of polygons that represents a single instance
of an object mask. The object can be represented as a set of
polygons
"""
def __init__(self, polygons, size, mode):
# assert isinstance(polygons, list), '{}'.format(polygons)
if isinstance(polygons, list):
polygons = [torch.as_tensor(p, dtype=torch.float32) for p in polygons]
elif isinstance(polygons, Polygons):
polygons = polygons.polygons
self.polygons = polygons
self.size = size
self.mode = mode
def transpose(self, method):
if method not in (FLIP_LEFT_RIGHT, FLIP_TOP_BOTTOM):
raise NotImplementedError(
"Only FLIP_LEFT_RIGHT and FLIP_TOP_BOTTOM implemented"
)
flipped_polygons = []
width, height = self.size
if method == FLIP_LEFT_RIGHT:
dim = width
idx = 0
elif method == FLIP_TOP_BOTTOM:
dim = height
idx = 1
for poly in self.polygons:
p = poly.clone()
TO_REMOVE = 1
p[idx::2] = dim - poly[idx::2] - TO_REMOVE
flipped_polygons.append(p)
return Polygons(flipped_polygons, size=self.size, mode=self.mode)
def crop(self, box):
w, h = box[2] - box[0], box[3] - box[1]
# TODO chck if necessary
w = max(w, 1)
h = max(h, 1)
cropped_polygons = []
for poly in self.polygons:
p = poly.clone()
p[0::2] = p[0::2] - box[0] # .clamp(min=0, max=w)
p[1::2] = p[1::2] - box[1] # .clamp(min=0, max=h)
cropped_polygons.append(p)
return Polygons(cropped_polygons, size=(w, h), mode=self.mode)
def resize(self, size, *args, **kwargs):
ratios = tuple(float(s) / float(s_orig) for s, s_orig in zip(size, self.size))
if ratios[0] == ratios[1]:
ratio = ratios[0]
scaled_polys = [p * ratio for p in self.polygons]
return Polygons(scaled_polys, size, mode=self.mode)
ratio_w, ratio_h = ratios
scaled_polygons = []
for poly in self.polygons:
p = poly.clone()
p[0::2] *= ratio_w
p[1::2] *= ratio_h
scaled_polygons.append(p)
return Polygons(scaled_polygons, size=size, mode=self.mode)
def convert(self, mode):
width, height = self.size
if mode == "mask":
rles = mask_utils.frPyObjects(
[p.detach().numpy() for p in self.polygons], height, width
)
rle = mask_utils.merge(rles)
mask = mask_utils.decode(rle)
mask = torch.from_numpy(mask)
# TODO add squeeze?
return mask
def __repr__(self):
s = self.__class__.__name__ + "("
s += "num_polygons={}, ".format(len(self.polygons))
s += "image_width={}, ".format(self.size[0])
s += "image_height={}, ".format(self.size[1])
s += "mode={})".format(self.mode)
return s
class SegmentationMask(object):
"""
This class stores the segmentations for all objects in the image
"""
def __init__(self, polygons, size, mode=None):
"""
Arguments:
polygons: a list of list of lists of numbers. The first
level of the list correspond to individual instances,
the second level to all the polygons that compose the
object, and the third level to the polygon coordinates.
"""
assert isinstance(polygons, list)
self.polygons = [Polygons(p, size, mode) for p in polygons]
self.size = size
self.mode = mode
def transpose(self, method):
if method not in (FLIP_LEFT_RIGHT, FLIP_TOP_BOTTOM):
raise NotImplementedError(
"Only FLIP_LEFT_RIGHT and FLIP_TOP_BOTTOM implemented"
)
flipped = []
for polygon in self.polygons:
flipped.append(polygon.transpose(method))
return SegmentationMask(flipped, size=self.size, mode=self.mode)
def crop(self, box):
w, h = box[2] - box[0], box[3] - box[1]
cropped = []
for polygon in self.polygons:
cropped.append(polygon.crop(box))
return SegmentationMask(cropped, size=(w, h), mode=self.mode)
def resize(self, size, *args, **kwargs):
scaled = []
for polygon in self.polygons:
scaled.append(polygon.resize(size, *args, **kwargs))
return SegmentationMask(scaled, size=size, mode=self.mode)
def to(self, *args, **kwargs):
return self
def __getitem__(self, item):
if isinstance(item, (int, slice)):
selected_polygons = [self.polygons[item]]
else:
# advanced indexing on a single dimension
selected_polygons = []
if isinstance(item, torch.Tensor) and item.dtype == torch.bool:
item = item.nonzero()
item = item.squeeze(1) if item.numel() > 0 else item
item = item.tolist()
for i in item:
selected_polygons.append(self.polygons[i])
return SegmentationMask(selected_polygons, size=self.size, mode=self.mode)
def __iter__(self):
return iter(self.polygons)
def __repr__(self):
s = self.__class__.__name__ + "("
s += "num_instances={}, ".format(len(self.polygons))
s += "image_width={}, ".format(self.size[0])
s += "image_height={})".format(self.size[1])
return s