Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from typing import List | |
class ConvNextV2LayerNorm(nn.Module): | |
r"""LayerNorm that supports two data formats: channels_last (default) or channels_first. | |
The ordering of the dimensions in the inputs. channels_last corresponds to inputs with shape (batch_size, height, | |
width, channels) while channels_first corresponds to inputs with shape (batch_size, channels, height, width). | |
""" | |
def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last"): | |
super().__init__() | |
self.weight = nn.Parameter(torch.ones(normalized_shape)) | |
self.bias = nn.Parameter(torch.zeros(normalized_shape)) | |
self.eps = eps | |
self.data_format = data_format | |
if self.data_format not in ["channels_last", "channels_first"]: | |
raise NotImplementedError(f"Unsupported data format: {self.data_format}") | |
self.normalized_shape = (normalized_shape,) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
if self.data_format == "channels_last": | |
x = torch.nn.functional.layer_norm( | |
x, self.normalized_shape, self.weight, self.bias, self.eps | |
) | |
elif self.data_format == "channels_first": | |
input_dtype = x.dtype | |
x = x.float() | |
u = x.mean(1, keepdim=True) | |
s = (x - u).pow(2).mean(1, keepdim=True) | |
x = (x - u) / torch.sqrt(s + self.eps) | |
x = x.to(dtype=input_dtype) | |
x = self.weight[None, :, None] * x + self.bias[None, :, None] | |
return x | |
class GRN(nn.Module): | |
def __init__(self, dim): | |
super().__init__() | |
self.gamma = nn.Parameter(torch.zeros(1, 1, dim)) | |
self.beta = nn.Parameter(torch.zeros(1, 1, dim)) | |
def forward(self, x): | |
Gx = torch.norm(x, p=2, dim=1, keepdim=True) | |
Nx = Gx / (Gx.mean(dim=-1, keepdim=True) + 1e-6) | |
return self.gamma * (x * Nx) + self.beta + x | |
class InterpolationLayer(nn.Module): | |
def __init__(self, ): # this is a default of 1 / 50 * (44100 / 512) / 4 | |
super().__init__() | |
pass | |
def forward(self, x: torch.Tensor, target_len: torch.Tensor, *args, **kwargs) -> torch.Tensor: | |
x = F.interpolate(x, size=target_len, mode='linear') | |
return x | |
class ConvNeXtV2Stage(nn.Module): | |
def __init__( | |
self, | |
dim: int = 512, | |
intermediate_dim: int = 2048, | |
num_blocks: int = 1, | |
dilation: int = 1, | |
downsample_layer_indices: List[int] = None, | |
downsample_factors: List[int] = None, | |
upsample_layer_indices: List[int] = None, | |
upsample_factors: List[int] = None, | |
interpolation_layer_indices: List[int] = None, | |
input_dim: int = None, | |
output_dim: int = None, | |
gin_channels: int = 0, | |
): | |
super().__init__() | |
# maybe downsample layers | |
if downsample_layer_indices is not None: | |
assert downsample_factors is not None | |
self.downsample_blocks = nn.ModuleList( | |
[ | |
nn.Sequential( | |
ConvNextV2LayerNorm(dim, data_format="channels_first"), | |
nn.Conv1d( | |
dim, dim, kernel_size=downsample_factor, stride=downsample_factor | |
), | |
) for _, downsample_factor in zip(downsample_layer_indices, downsample_factors) | |
] | |
) | |
self.downsample_layer_indices = downsample_layer_indices | |
else: | |
self.downsample_blocks = nn.ModuleList() | |
self.downsample_layer_indices = [] | |
# maybe upsample layers | |
if upsample_layer_indices is not None: | |
assert upsample_factors is not None | |
self.upsample_blocks = nn.ModuleList( | |
[ | |
nn.Sequential( | |
ConvNextV2LayerNorm(dim, data_format="channels_first"), | |
nn.ConvTranspose1d( | |
dim, dim, kernel_size=upsample_factor, stride=upsample_factor | |
), | |
) for _, upsample_factor in zip(upsample_layer_indices, upsample_factors) | |
] | |
) | |
self.upsample_layer_indices = upsample_layer_indices | |
else: | |
self.upsample_blocks = nn.ModuleList() | |
self.upsample_layer_indices = [] | |
# maybe interpolation layers | |
if interpolation_layer_indices is not None: | |
self.interpolation_blocks = nn.ModuleList( | |
[ | |
InterpolationLayer() | |
for _ in interpolation_layer_indices | |
] | |
) | |
self.interpolation_layer_indices = interpolation_layer_indices | |
else: | |
self.interpolation_blocks = nn.ModuleList() | |
self.interpolation_layer_indices = [] | |
# main blocks | |
self.blocks = nn.ModuleList( | |
[ | |
ConvNeXtV2Block( | |
dim=dim, | |
intermediate_dim=intermediate_dim, | |
dilation=dilation, | |
) | |
for _ in range(num_blocks) | |
] | |
) | |
# maybe input and output projections | |
if input_dim is not None and input_dim != dim: | |
self.input_projection = nn.Conv1d(input_dim, dim, kernel_size=1) | |
else: | |
self.input_projection = nn.Identity() | |
if output_dim is not None and output_dim != dim: | |
self.output_projection = nn.Conv1d(dim, output_dim, kernel_size=1) | |
else: | |
self.output_projection = nn.Identity() | |
if gin_channels > 0: | |
self.gin = nn.Conv1d(gin_channels, dim, kernel_size=1) | |
def forward(self, x: torch.Tensor, *args, **kwargs) -> torch.Tensor: | |
x = self.input_projection(x) # B, D, T | |
if hasattr(self, 'gin'): | |
g = kwargs['g'] | |
x = x + self.gin(g) | |
# pad to a multiple of cumprod(downsample_factors) | |
if len(self.downsample_blocks) > 0: | |
downsample_factor = 1 | |
for factor in self.downsample_blocks: | |
downsample_factor *= factor[1].stride[0] | |
pad_len = downsample_factor - x.size(-1) % downsample_factor | |
if pad_len > 0: | |
x = torch.cat([x, torch.zeros_like(x[:, :, :pad_len])], dim=-1) | |
# main blocks | |
for layer_idx, block in enumerate(self.blocks): | |
if layer_idx in self.downsample_layer_indices: | |
x = self.downsample_blocks[self.downsample_layer_indices.index(layer_idx)](x) | |
if layer_idx in self.upsample_layer_indices: | |
x = self.upsample_blocks[self.upsample_layer_indices.index(layer_idx)](x) | |
if layer_idx in self.interpolation_layer_indices: | |
x = self.interpolation_blocks[self.interpolation_layer_indices.index(layer_idx)](x, target_len=kwargs['target_len']) | |
x = block(x) | |
x = self.output_projection(x) | |
return x | |
def setup_caches(self, *args, **kwargs): | |
pass | |
class ConvNeXtV2Block(nn.Module): | |
def __init__( | |
self, | |
dim: int, | |
intermediate_dim: int, | |
dilation: int = 1, | |
): | |
super().__init__() | |
padding = (dilation * (7 - 1)) // 2 | |
self.dwconv = nn.Conv1d( | |
dim, dim, kernel_size=7, padding=padding, groups=dim, dilation=dilation | |
) # depthwise conv | |
self.norm = ConvNextV2LayerNorm(dim, data_format="channels_first") | |
self.pwconv1 = nn.Linear( | |
dim, intermediate_dim | |
) # pointwise/1x1 convs, implemented with linear layers | |
self.act = nn.GELU() | |
self.grn = GRN(intermediate_dim) | |
self.pwconv2 = nn.Linear(intermediate_dim, dim) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
residual = x | |
x = self.dwconv(x) | |
x = self.norm(x) | |
x = x.transpose(1, 2) # b d n -> b n d | |
x = self.pwconv1(x) | |
x = self.act(x) | |
x = self.grn(x) | |
x = self.pwconv2(x) | |
x = x.transpose(1, 2) # b n d -> b d n | |
return residual + x |