Plachta's picture
Upload 116 files
56a1295 verified
import torch
import torch.nn as nn
import torch.nn.functional as F
from typing import List
class ConvNextV2LayerNorm(nn.Module):
r"""LayerNorm that supports two data formats: channels_last (default) or channels_first.
The ordering of the dimensions in the inputs. channels_last corresponds to inputs with shape (batch_size, height,
width, channels) while channels_first corresponds to inputs with shape (batch_size, channels, height, width).
"""
def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last"):
super().__init__()
self.weight = nn.Parameter(torch.ones(normalized_shape))
self.bias = nn.Parameter(torch.zeros(normalized_shape))
self.eps = eps
self.data_format = data_format
if self.data_format not in ["channels_last", "channels_first"]:
raise NotImplementedError(f"Unsupported data format: {self.data_format}")
self.normalized_shape = (normalized_shape,)
def forward(self, x: torch.Tensor) -> torch.Tensor:
if self.data_format == "channels_last":
x = torch.nn.functional.layer_norm(
x, self.normalized_shape, self.weight, self.bias, self.eps
)
elif self.data_format == "channels_first":
input_dtype = x.dtype
x = x.float()
u = x.mean(1, keepdim=True)
s = (x - u).pow(2).mean(1, keepdim=True)
x = (x - u) / torch.sqrt(s + self.eps)
x = x.to(dtype=input_dtype)
x = self.weight[None, :, None] * x + self.bias[None, :, None]
return x
class GRN(nn.Module):
def __init__(self, dim):
super().__init__()
self.gamma = nn.Parameter(torch.zeros(1, 1, dim))
self.beta = nn.Parameter(torch.zeros(1, 1, dim))
def forward(self, x):
Gx = torch.norm(x, p=2, dim=1, keepdim=True)
Nx = Gx / (Gx.mean(dim=-1, keepdim=True) + 1e-6)
return self.gamma * (x * Nx) + self.beta + x
class InterpolationLayer(nn.Module):
def __init__(self, ): # this is a default of 1 / 50 * (44100 / 512) / 4
super().__init__()
pass
def forward(self, x: torch.Tensor, target_len: torch.Tensor, *args, **kwargs) -> torch.Tensor:
x = F.interpolate(x, size=target_len, mode='linear')
return x
class ConvNeXtV2Stage(nn.Module):
def __init__(
self,
dim: int = 512,
intermediate_dim: int = 2048,
num_blocks: int = 1,
dilation: int = 1,
downsample_layer_indices: List[int] = None,
downsample_factors: List[int] = None,
upsample_layer_indices: List[int] = None,
upsample_factors: List[int] = None,
interpolation_layer_indices: List[int] = None,
input_dim: int = None,
output_dim: int = None,
gin_channels: int = 0,
):
super().__init__()
# maybe downsample layers
if downsample_layer_indices is not None:
assert downsample_factors is not None
self.downsample_blocks = nn.ModuleList(
[
nn.Sequential(
ConvNextV2LayerNorm(dim, data_format="channels_first"),
nn.Conv1d(
dim, dim, kernel_size=downsample_factor, stride=downsample_factor
),
) for _, downsample_factor in zip(downsample_layer_indices, downsample_factors)
]
)
self.downsample_layer_indices = downsample_layer_indices
else:
self.downsample_blocks = nn.ModuleList()
self.downsample_layer_indices = []
# maybe upsample layers
if upsample_layer_indices is not None:
assert upsample_factors is not None
self.upsample_blocks = nn.ModuleList(
[
nn.Sequential(
ConvNextV2LayerNorm(dim, data_format="channels_first"),
nn.ConvTranspose1d(
dim, dim, kernel_size=upsample_factor, stride=upsample_factor
),
) for _, upsample_factor in zip(upsample_layer_indices, upsample_factors)
]
)
self.upsample_layer_indices = upsample_layer_indices
else:
self.upsample_blocks = nn.ModuleList()
self.upsample_layer_indices = []
# maybe interpolation layers
if interpolation_layer_indices is not None:
self.interpolation_blocks = nn.ModuleList(
[
InterpolationLayer()
for _ in interpolation_layer_indices
]
)
self.interpolation_layer_indices = interpolation_layer_indices
else:
self.interpolation_blocks = nn.ModuleList()
self.interpolation_layer_indices = []
# main blocks
self.blocks = nn.ModuleList(
[
ConvNeXtV2Block(
dim=dim,
intermediate_dim=intermediate_dim,
dilation=dilation,
)
for _ in range(num_blocks)
]
)
# maybe input and output projections
if input_dim is not None and input_dim != dim:
self.input_projection = nn.Conv1d(input_dim, dim, kernel_size=1)
else:
self.input_projection = nn.Identity()
if output_dim is not None and output_dim != dim:
self.output_projection = nn.Conv1d(dim, output_dim, kernel_size=1)
else:
self.output_projection = nn.Identity()
if gin_channels > 0:
self.gin = nn.Conv1d(gin_channels, dim, kernel_size=1)
def forward(self, x: torch.Tensor, *args, **kwargs) -> torch.Tensor:
x = self.input_projection(x) # B, D, T
if hasattr(self, 'gin'):
g = kwargs['g']
x = x + self.gin(g)
# pad to a multiple of cumprod(downsample_factors)
if len(self.downsample_blocks) > 0:
downsample_factor = 1
for factor in self.downsample_blocks:
downsample_factor *= factor[1].stride[0]
pad_len = downsample_factor - x.size(-1) % downsample_factor
if pad_len > 0:
x = torch.cat([x, torch.zeros_like(x[:, :, :pad_len])], dim=-1)
# main blocks
for layer_idx, block in enumerate(self.blocks):
if layer_idx in self.downsample_layer_indices:
x = self.downsample_blocks[self.downsample_layer_indices.index(layer_idx)](x)
if layer_idx in self.upsample_layer_indices:
x = self.upsample_blocks[self.upsample_layer_indices.index(layer_idx)](x)
if layer_idx in self.interpolation_layer_indices:
x = self.interpolation_blocks[self.interpolation_layer_indices.index(layer_idx)](x, target_len=kwargs['target_len'])
x = block(x)
x = self.output_projection(x)
return x
def setup_caches(self, *args, **kwargs):
pass
class ConvNeXtV2Block(nn.Module):
def __init__(
self,
dim: int,
intermediate_dim: int,
dilation: int = 1,
):
super().__init__()
padding = (dilation * (7 - 1)) // 2
self.dwconv = nn.Conv1d(
dim, dim, kernel_size=7, padding=padding, groups=dim, dilation=dilation
) # depthwise conv
self.norm = ConvNextV2LayerNorm(dim, data_format="channels_first")
self.pwconv1 = nn.Linear(
dim, intermediate_dim
) # pointwise/1x1 convs, implemented with linear layers
self.act = nn.GELU()
self.grn = GRN(intermediate_dim)
self.pwconv2 = nn.Linear(intermediate_dim, dim)
def forward(self, x: torch.Tensor) -> torch.Tensor:
residual = x
x = self.dwconv(x)
x = self.norm(x)
x = x.transpose(1, 2) # b d n -> b n d
x = self.pwconv1(x)
x = self.act(x)
x = self.grn(x)
x = self.pwconv2(x)
x = x.transpose(1, 2) # b n d -> b d n
return residual + x