Spaces:
Running
on
A10G
Running
on
A10G
Fix OOM
Browse files
app.py
CHANGED
@@ -35,14 +35,7 @@ from examples import *
|
|
35 |
|
36 |
import gradio as gr
|
37 |
import whisper
|
38 |
-
import multiprocessing
|
39 |
|
40 |
-
thread_count = multiprocessing.cpu_count()
|
41 |
-
|
42 |
-
print("Use",thread_count,"cpu cores for computing")
|
43 |
-
|
44 |
-
torch.set_num_threads(thread_count)
|
45 |
-
torch.set_num_interop_threads(thread_count)
|
46 |
torch._C._jit_set_profiling_executor(False)
|
47 |
torch._C._jit_set_profiling_mode(False)
|
48 |
torch._C._set_graph_executor_optimize(False)
|
@@ -66,11 +59,12 @@ model = VALLE(
|
|
66 |
nar_scale_factor=1.0,
|
67 |
prepend_bos=True,
|
68 |
num_quantizers=NUM_QUANTIZERS,
|
69 |
-
)
|
70 |
checkpoint = torch.load("./epoch-10.pt", map_location='cpu')
|
71 |
missing_keys, unexpected_keys = model.load_state_dict(
|
72 |
checkpoint["model"], strict=True
|
73 |
)
|
|
|
74 |
assert not missing_keys
|
75 |
model.eval()
|
76 |
|
@@ -78,7 +72,7 @@ model.eval()
|
|
78 |
audio_tokenizer = AudioTokenizer(device)
|
79 |
|
80 |
# ASR
|
81 |
-
whisper_model = whisper.load_model("medium").
|
82 |
|
83 |
# Voice Presets
|
84 |
preset_list = os.walk("./presets/").__next__()[2]
|
@@ -166,7 +160,6 @@ def make_npz_prompt(name, uploaded_audio, recorded_audio, transcript_content):
|
|
166 |
|
167 |
def make_prompt(name, wav, sr, save=True):
|
168 |
global whisper_model
|
169 |
-
whisper_model.to(device)
|
170 |
if not isinstance(wav, torch.FloatTensor):
|
171 |
wav = torch.tensor(wav)
|
172 |
if wav.abs().max() > 1:
|
@@ -186,8 +179,6 @@ def make_prompt(name, wav, sr, save=True):
|
|
186 |
os.remove(f"./prompts/{name}.wav")
|
187 |
os.remove(f"./prompts/{name}.txt")
|
188 |
|
189 |
-
whisper_model.cpu()
|
190 |
-
torch.cuda.empty_cache()
|
191 |
return text, lang
|
192 |
|
193 |
@torch.no_grad()
|
@@ -195,7 +186,6 @@ def infer_from_audio(text, language, accent, audio_prompt, record_audio_prompt,
|
|
195 |
if len(text) > 150:
|
196 |
return "Rejected, Text too long (should be less than 150 characters)", None
|
197 |
global model, text_collater, text_tokenizer, audio_tokenizer
|
198 |
-
model.to(device)
|
199 |
audio_prompt = audio_prompt if audio_prompt is not None else record_audio_prompt
|
200 |
sr, wav_pr = audio_prompt
|
201 |
if len(wav_pr) / sr > 15:
|
@@ -224,9 +214,6 @@ def infer_from_audio(text, language, accent, audio_prompt, record_audio_prompt,
|
|
224 |
lang = token2lang[lang_token]
|
225 |
text = lang_token + text + lang_token
|
226 |
|
227 |
-
# onload model
|
228 |
-
model.to(device)
|
229 |
-
|
230 |
# tokenize audio
|
231 |
encoded_frames = tokenize_audio(audio_tokenizer, (wav_pr, sr))
|
232 |
audio_prompts = encoded_frames[0][0].transpose(2, 1).to(device)
|
@@ -265,10 +252,6 @@ def infer_from_audio(text, language, accent, audio_prompt, record_audio_prompt,
|
|
265 |
[(encoded_frames.transpose(2, 1), None)]
|
266 |
)
|
267 |
|
268 |
-
# offload model
|
269 |
-
model.to('cpu')
|
270 |
-
torch.cuda.empty_cache()
|
271 |
-
|
272 |
message = f"text prompt: {text_pr}\nsythesized text: {text}"
|
273 |
return message, (24000, samples[0][0].cpu().numpy())
|
274 |
|
@@ -277,7 +260,6 @@ def infer_from_prompt(text, language, accent, preset_prompt, prompt_file):
|
|
277 |
if len(text) > 150:
|
278 |
return "Rejected, Text too long (should be less than 150 characters)", None
|
279 |
clear_prompts()
|
280 |
-
model.to(device)
|
281 |
# text to synthesize
|
282 |
if language == 'auto-detect':
|
283 |
lang_token = lang2token[langid.classify(text)[0]]
|
@@ -325,8 +307,6 @@ def infer_from_prompt(text, language, accent, preset_prompt, prompt_file):
|
|
325 |
samples = audio_tokenizer.decode(
|
326 |
[(encoded_frames.transpose(2, 1), None)]
|
327 |
)
|
328 |
-
model.to('cpu')
|
329 |
-
torch.cuda.empty_cache()
|
330 |
|
331 |
message = f"sythesized text: {text}"
|
332 |
return message, (24000, samples[0][0].cpu().numpy())
|
@@ -344,7 +324,6 @@ def infer_long_text(text, preset_prompt, prompt=None, language='auto', accent='n
|
|
344 |
return "Rejected, Text too long (should be less than 1000 characters)", None
|
345 |
mode = 'fixed-prompt'
|
346 |
global model, audio_tokenizer, text_tokenizer, text_collater
|
347 |
-
model.to(device)
|
348 |
if (prompt is None or prompt == "") and preset_prompt == "":
|
349 |
mode = 'sliding-window' # If no prompt is given, use sliding-window mode
|
350 |
sentences = split_text_into_sentences(text)
|
@@ -416,7 +395,6 @@ def infer_long_text(text, preset_prompt, prompt=None, language='auto', accent='n
|
|
416 |
samples = audio_tokenizer.decode(
|
417 |
[(complete_tokens, None)]
|
418 |
)
|
419 |
-
model.to('cpu')
|
420 |
message = f"Cut into {len(sentences)} sentences"
|
421 |
return message, (24000, samples[0][0].cpu().numpy())
|
422 |
elif mode == "sliding-window":
|
@@ -463,7 +441,6 @@ def infer_long_text(text, preset_prompt, prompt=None, language='auto', accent='n
|
|
463 |
samples = audio_tokenizer.decode(
|
464 |
[(complete_tokens, None)]
|
465 |
)
|
466 |
-
model.to('cpu')
|
467 |
message = f"Cut into {len(sentences)} sentences"
|
468 |
return message, (24000, samples[0][0].cpu().numpy())
|
469 |
else:
|
|
|
35 |
|
36 |
import gradio as gr
|
37 |
import whisper
|
|
|
38 |
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
torch._C._jit_set_profiling_executor(False)
|
40 |
torch._C._jit_set_profiling_mode(False)
|
41 |
torch._C._set_graph_executor_optimize(False)
|
|
|
59 |
nar_scale_factor=1.0,
|
60 |
prepend_bos=True,
|
61 |
num_quantizers=NUM_QUANTIZERS,
|
62 |
+
).to(device)
|
63 |
checkpoint = torch.load("./epoch-10.pt", map_location='cpu')
|
64 |
missing_keys, unexpected_keys = model.load_state_dict(
|
65 |
checkpoint["model"], strict=True
|
66 |
)
|
67 |
+
del checkpoint
|
68 |
assert not missing_keys
|
69 |
model.eval()
|
70 |
|
|
|
72 |
audio_tokenizer = AudioTokenizer(device)
|
73 |
|
74 |
# ASR
|
75 |
+
whisper_model = whisper.load_model("medium").to(device)
|
76 |
|
77 |
# Voice Presets
|
78 |
preset_list = os.walk("./presets/").__next__()[2]
|
|
|
160 |
|
161 |
def make_prompt(name, wav, sr, save=True):
|
162 |
global whisper_model
|
|
|
163 |
if not isinstance(wav, torch.FloatTensor):
|
164 |
wav = torch.tensor(wav)
|
165 |
if wav.abs().max() > 1:
|
|
|
179 |
os.remove(f"./prompts/{name}.wav")
|
180 |
os.remove(f"./prompts/{name}.txt")
|
181 |
|
|
|
|
|
182 |
return text, lang
|
183 |
|
184 |
@torch.no_grad()
|
|
|
186 |
if len(text) > 150:
|
187 |
return "Rejected, Text too long (should be less than 150 characters)", None
|
188 |
global model, text_collater, text_tokenizer, audio_tokenizer
|
|
|
189 |
audio_prompt = audio_prompt if audio_prompt is not None else record_audio_prompt
|
190 |
sr, wav_pr = audio_prompt
|
191 |
if len(wav_pr) / sr > 15:
|
|
|
214 |
lang = token2lang[lang_token]
|
215 |
text = lang_token + text + lang_token
|
216 |
|
|
|
|
|
|
|
217 |
# tokenize audio
|
218 |
encoded_frames = tokenize_audio(audio_tokenizer, (wav_pr, sr))
|
219 |
audio_prompts = encoded_frames[0][0].transpose(2, 1).to(device)
|
|
|
252 |
[(encoded_frames.transpose(2, 1), None)]
|
253 |
)
|
254 |
|
|
|
|
|
|
|
|
|
255 |
message = f"text prompt: {text_pr}\nsythesized text: {text}"
|
256 |
return message, (24000, samples[0][0].cpu().numpy())
|
257 |
|
|
|
260 |
if len(text) > 150:
|
261 |
return "Rejected, Text too long (should be less than 150 characters)", None
|
262 |
clear_prompts()
|
|
|
263 |
# text to synthesize
|
264 |
if language == 'auto-detect':
|
265 |
lang_token = lang2token[langid.classify(text)[0]]
|
|
|
307 |
samples = audio_tokenizer.decode(
|
308 |
[(encoded_frames.transpose(2, 1), None)]
|
309 |
)
|
|
|
|
|
310 |
|
311 |
message = f"sythesized text: {text}"
|
312 |
return message, (24000, samples[0][0].cpu().numpy())
|
|
|
324 |
return "Rejected, Text too long (should be less than 1000 characters)", None
|
325 |
mode = 'fixed-prompt'
|
326 |
global model, audio_tokenizer, text_tokenizer, text_collater
|
|
|
327 |
if (prompt is None or prompt == "") and preset_prompt == "":
|
328 |
mode = 'sliding-window' # If no prompt is given, use sliding-window mode
|
329 |
sentences = split_text_into_sentences(text)
|
|
|
395 |
samples = audio_tokenizer.decode(
|
396 |
[(complete_tokens, None)]
|
397 |
)
|
|
|
398 |
message = f"Cut into {len(sentences)} sentences"
|
399 |
return message, (24000, samples[0][0].cpu().numpy())
|
400 |
elif mode == "sliding-window":
|
|
|
441 |
samples = audio_tokenizer.decode(
|
442 |
[(complete_tokens, None)]
|
443 |
)
|
|
|
444 |
message = f"Cut into {len(sentences)} sentences"
|
445 |
return message, (24000, samples[0][0].cpu().numpy())
|
446 |
else:
|