import argparse import logging import os import pathlib import time import tempfile import platform if platform.system().lower() == 'windows': temp = pathlib.PosixPath pathlib.PosixPath = pathlib.WindowsPath elif platform.system().lower() == 'linux': temp = pathlib.WindowsPath pathlib.WindowsPath = pathlib.PosixPath os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python" import langid langid.set_languages(['en', 'zh', 'ja']) import torch import torchaudio import random import numpy as np from data.tokenizer import ( AudioTokenizer, tokenize_audio, ) from data.collation import get_text_token_collater from models.vallex import VALLE from utils.g2p import PhonemeBpeTokenizer from descriptions import * from macros import * from examples import * import gradio as gr import whisper torch._C._jit_set_profiling_executor(False) torch._C._jit_set_profiling_mode(False) torch._C._set_graph_executor_optimize(False) text_tokenizer = PhonemeBpeTokenizer(tokenizer_path="./utils/g2p/bpe_69.json") text_collater = get_text_token_collater() device = torch.device("cpu") # if torch.cuda.is_available(): # device = torch.device("cuda", 0) # VALL-E-X model model = VALLE( N_DIM, NUM_HEAD, NUM_LAYERS, norm_first=True, add_prenet=False, prefix_mode=PREFIX_MODE, share_embedding=True, nar_scale_factor=1.0, prepend_bos=True, num_quantizers=NUM_QUANTIZERS, ).to(device) checkpoint = torch.load("./epoch-10.pt", map_location='cpu') missing_keys, unexpected_keys = model.load_state_dict( checkpoint["model"], strict=True ) del checkpoint assert not missing_keys model.eval() # Encodec model audio_tokenizer = AudioTokenizer(device) # ASR whisper_model = whisper.load_model("medium").to(device) # Voice Presets preset_list = os.walk("./presets/").__next__()[2] preset_list = [preset[:-4] for preset in preset_list if preset.endswith(".npz")] def clear_prompts(): try: path = tempfile.gettempdir() for eachfile in os.listdir(path): filename = os.path.join(path, eachfile) if os.path.isfile(filename) and filename.endswith(".npz"): lastmodifytime = os.stat(filename).st_mtime endfiletime = time.time() - 60 if endfiletime > lastmodifytime: os.remove(filename) except: return def transcribe_one(model, audio_path): # load audio and pad/trim it to fit 30 seconds audio = whisper.load_audio(audio_path) audio = whisper.pad_or_trim(audio) # make log-Mel spectrogram and move to the same device as the model mel = whisper.log_mel_spectrogram(audio).to(model.device) # detect the spoken language _, probs = model.detect_language(mel) print(f"Detected language: {max(probs, key=probs.get)}") lang = max(probs, key=probs.get) # decode the audio options = whisper.DecodingOptions(temperature=1.0, best_of=5, fp16=False if device == torch.device("cpu") else True, sample_len=150) result = whisper.decode(model, mel, options) # print the recognized text print(result.text) text_pr = result.text if text_pr.strip(" ")[-1] not in "?!.,。,?!。、": text_pr += "." return lang, text_pr def make_npz_prompt(name, uploaded_audio, recorded_audio, transcript_content): clear_prompts() audio_prompt = uploaded_audio if uploaded_audio is not None else recorded_audio sr, wav_pr = audio_prompt if len(wav_pr) / sr > 15: return "Rejected, Audio too long (should be less than 15 seconds)", None if not isinstance(wav_pr, torch.FloatTensor): wav_pr = torch.FloatTensor(wav_pr) if wav_pr.abs().max() > 1: wav_pr /= wav_pr.abs().max() if wav_pr.size(-1) == 2: wav_pr = wav_pr[:, 0] if wav_pr.ndim == 1: wav_pr = wav_pr.unsqueeze(0) assert wav_pr.ndim and wav_pr.size(0) == 1 if transcript_content == "": text_pr, lang_pr = make_prompt(name, wav_pr, sr, save=False) else: lang_pr = langid.classify(str(transcript_content))[0] lang_token = lang2token[lang_pr] text_pr = f"{lang_token}{str(transcript_content)}{lang_token}" # tokenize audio encoded_frames = tokenize_audio(audio_tokenizer, (wav_pr, sr)) audio_tokens = encoded_frames[0][0].transpose(2, 1).cpu().numpy() # tokenize text phonemes, _ = text_tokenizer.tokenize(text=f"{text_pr}".strip()) text_tokens, enroll_x_lens = text_collater( [ phonemes ] ) message = f"Detected language: {lang_pr}\n Detected text {text_pr}\n" # save as npz file np.savez(os.path.join(tempfile.gettempdir(), f"{name}.npz"), audio_tokens=audio_tokens, text_tokens=text_tokens, lang_code=lang2code[lang_pr]) return message, os.path.join(tempfile.gettempdir(), f"{name}.npz") def make_prompt(name, wav, sr, save=True): if not isinstance(wav, torch.FloatTensor): wav = torch.tensor(wav) if wav.abs().max() > 1: wav /= wav.abs().max() if wav.size(-1) == 2: wav = wav.mean(-1, keepdim=False) if wav.ndim == 1: wav = wav.unsqueeze(0) assert wav.ndim and wav.size(0) == 1 torchaudio.save(f"./prompts/{name}.wav", wav, sr) lang, text = transcribe_one(whisper_model, f"./prompts/{name}.wav") lang_token = lang2token[lang] text = lang_token + text + lang_token with open(f"./prompts/{name}.txt", 'w') as f: f.write(text) if not save: os.remove(f"./prompts/{name}.wav") os.remove(f"./prompts/{name}.txt") return text, lang @torch.no_grad() def infer_from_audio(text, language, accent, audio_prompt, record_audio_prompt, transcript_content): if len(text) > 150: return "Rejected, Text too long (should be less than 150 characters)", None audio_prompt = audio_prompt if audio_prompt is not None else record_audio_prompt sr, wav_pr = audio_prompt if len(wav_pr) / sr > 15: return "Rejected, Audio too long (should be less than 15 seconds)", None if not isinstance(wav_pr, torch.FloatTensor): wav_pr = torch.FloatTensor(wav_pr) if wav_pr.abs().max() > 1: wav_pr /= wav_pr.abs().max() if wav_pr.size(-1) == 2: wav_pr = wav_pr[:, 0] if wav_pr.ndim == 1: wav_pr = wav_pr.unsqueeze(0) assert wav_pr.ndim and wav_pr.size(0) == 1 if transcript_content == "": text_pr, lang_pr = make_prompt('dummy', wav_pr, sr, save=False) else: lang_pr = langid.classify(str(transcript_content))[0] lang_token = lang2token[lang_pr] text_pr = f"{lang_token}{str(transcript_content)}{lang_token}" if language == 'auto-detect': lang_token = lang2token[langid.classify(text)[0]] else: lang_token = langdropdown2token[language] lang = token2lang[lang_token] text = lang_token + text + lang_token # tokenize audio encoded_frames = tokenize_audio(audio_tokenizer, (wav_pr, sr)) audio_prompts = encoded_frames[0][0].transpose(2, 1).to(device) # tokenize text logging.info(f"synthesize text: {text}") phone_tokens, langs = text_tokenizer.tokenize(text=f"_{text}".strip()) text_tokens, text_tokens_lens = text_collater( [ phone_tokens ] ) enroll_x_lens = None if text_pr: text_prompts, _ = text_tokenizer.tokenize(text=f"{text_pr}".strip()) text_prompts, enroll_x_lens = text_collater( [ text_prompts ] ) text_tokens = torch.cat([text_prompts, text_tokens], dim=-1) text_tokens_lens += enroll_x_lens lang = lang if accent == "no-accent" else token2lang[langdropdown2token[accent]] encoded_frames = model.inference( text_tokens.to(device), text_tokens_lens.to(device), audio_prompts, enroll_x_lens=enroll_x_lens, top_k=-100, temperature=1, prompt_language=lang_pr, text_language=langs if accent == "no-accent" else lang, ) samples = audio_tokenizer.decode( [(encoded_frames.transpose(2, 1), None)] ) message = f"text prompt: {text_pr}\nsythesized text: {text}" return message, (24000, samples[0][0].cpu().numpy()) @torch.no_grad() def infer_from_prompt(text, language, accent, preset_prompt, prompt_file): if len(text) > 150: return "Rejected, Text too long (should be less than 150 characters)", None clear_prompts() # text to synthesize if language == 'auto-detect': lang_token = lang2token[langid.classify(text)[0]] else: lang_token = langdropdown2token[language] lang = token2lang[lang_token] text = lang_token + text + lang_token # load prompt if prompt_file is not None: prompt_data = np.load(prompt_file.name) else: prompt_data = np.load(os.path.join("./presets/", f"{preset_prompt}.npz")) audio_prompts = prompt_data['audio_tokens'] text_prompts = prompt_data['text_tokens'] lang_pr = prompt_data['lang_code'] lang_pr = code2lang[int(lang_pr)] # numpy to tensor audio_prompts = torch.tensor(audio_prompts).type(torch.int32).to(device) text_prompts = torch.tensor(text_prompts).type(torch.int32) enroll_x_lens = text_prompts.shape[-1] logging.info(f"synthesize text: {text}") phone_tokens, langs = text_tokenizer.tokenize(text=f"_{text}".strip()) text_tokens, text_tokens_lens = text_collater( [ phone_tokens ] ) text_tokens = torch.cat([text_prompts, text_tokens], dim=-1) text_tokens_lens += enroll_x_lens # accent control lang = lang if accent == "no-accent" else token2lang[langdropdown2token[accent]] encoded_frames = model.inference( text_tokens.to(device), text_tokens_lens.to(device), audio_prompts, enroll_x_lens=enroll_x_lens, top_k=-100, temperature=1, prompt_language=lang_pr, text_language=langs if accent == "no-accent" else lang, ) samples = audio_tokenizer.decode( [(encoded_frames.transpose(2, 1), None)] ) message = f"sythesized text: {text}" return message, (24000, samples[0][0].cpu().numpy()) from utils.sentence_cutter import split_text_into_sentences @torch.no_grad() def infer_long_text(text, preset_prompt, prompt=None, language='auto', accent='no-accent'): """ For long audio generation, two modes are available. fixed-prompt: This mode will keep using the same prompt the user has provided, and generate audio sentence by sentence. sliding-window: This mode will use the last sentence as the prompt for the next sentence, but has some concern on speaker maintenance. """ if len(text) > 1000: return "Rejected, Text too long (should be less than 1000 characters)", None mode = 'fixed-prompt' global model, audio_tokenizer, text_tokenizer, text_collater if (prompt is None or prompt == "") and preset_prompt == "": mode = 'sliding-window' # If no prompt is given, use sliding-window mode sentences = split_text_into_sentences(text) # detect language if language == "auto-detect": language = langid.classify(text)[0] else: language = token2lang[langdropdown2token[language]] # if initial prompt is given, encode it if prompt is not None and prompt != "": # load prompt prompt_data = np.load(prompt.name) audio_prompts = prompt_data['audio_tokens'] text_prompts = prompt_data['text_tokens'] lang_pr = prompt_data['lang_code'] lang_pr = code2lang[int(lang_pr)] # numpy to tensor audio_prompts = torch.tensor(audio_prompts).type(torch.int32).to(device) text_prompts = torch.tensor(text_prompts).type(torch.int32) elif preset_prompt is not None and preset_prompt != "": prompt_data = np.load(os.path.join("./presets/", f"{preset_prompt}.npz")) audio_prompts = prompt_data['audio_tokens'] text_prompts = prompt_data['text_tokens'] lang_pr = prompt_data['lang_code'] lang_pr = code2lang[int(lang_pr)] # numpy to tensor audio_prompts = torch.tensor(audio_prompts).type(torch.int32).to(device) text_prompts = torch.tensor(text_prompts).type(torch.int32) else: audio_prompts = torch.zeros([1, 0, NUM_QUANTIZERS]).type(torch.int32).to(device) text_prompts = torch.zeros([1, 0]).type(torch.int32) lang_pr = language if language != 'mix' else 'en' if mode == 'fixed-prompt': complete_tokens = torch.zeros([1, NUM_QUANTIZERS, 0]).type(torch.LongTensor).to(device) for text in sentences: text = text.replace("\n", "").strip(" ") if text == "": continue lang_token = lang2token[language] lang = token2lang[lang_token] text = lang_token + text + lang_token enroll_x_lens = text_prompts.shape[-1] logging.info(f"synthesize text: {text}") phone_tokens, langs = text_tokenizer.tokenize(text=f"_{text}".strip()) text_tokens, text_tokens_lens = text_collater( [ phone_tokens ] ) text_tokens = torch.cat([text_prompts, text_tokens], dim=-1) text_tokens_lens += enroll_x_lens # accent control lang = lang if accent == "no-accent" else token2lang[langdropdown2token[accent]] encoded_frames = model.inference( text_tokens.to(device), text_tokens_lens.to(device), audio_prompts, enroll_x_lens=enroll_x_lens, top_k=-100, temperature=1, prompt_language=lang_pr, text_language=langs if accent == "no-accent" else lang, ) complete_tokens = torch.cat([complete_tokens, encoded_frames.transpose(2, 1)], dim=-1) samples = audio_tokenizer.decode( [(complete_tokens, None)] ) message = f"Cut into {len(sentences)} sentences" return message, (24000, samples[0][0].cpu().numpy()) elif mode == "sliding-window": complete_tokens = torch.zeros([1, NUM_QUANTIZERS, 0]).type(torch.LongTensor).to(device) original_audio_prompts = audio_prompts original_text_prompts = text_prompts for text in sentences: text = text.replace("\n", "").strip(" ") if text == "": continue lang_token = lang2token[language] lang = token2lang[lang_token] text = lang_token + text + lang_token enroll_x_lens = text_prompts.shape[-1] logging.info(f"synthesize text: {text}") phone_tokens, langs = text_tokenizer.tokenize(text=f"_{text}".strip()) text_tokens, text_tokens_lens = text_collater( [ phone_tokens ] ) text_tokens = torch.cat([text_prompts, text_tokens], dim=-1) text_tokens_lens += enroll_x_lens # accent control lang = lang if accent == "no-accent" else token2lang[langdropdown2token[accent]] encoded_frames = model.inference( text_tokens.to(device), text_tokens_lens.to(device), audio_prompts, enroll_x_lens=enroll_x_lens, top_k=-100, temperature=1, prompt_language=lang_pr, text_language=langs if accent == "no-accent" else lang, ) complete_tokens = torch.cat([complete_tokens, encoded_frames.transpose(2, 1)], dim=-1) if torch.rand(1) < 1.0: audio_prompts = encoded_frames[:, :, -NUM_QUANTIZERS:] text_prompts = text_tokens[:, enroll_x_lens:] else: audio_prompts = original_audio_prompts text_prompts = original_text_prompts samples = audio_tokenizer.decode( [(complete_tokens, None)] ) message = f"Cut into {len(sentences)} sentences" return message, (24000, samples[0][0].cpu().numpy()) else: raise ValueError(f"No such mode {mode}") def main(): app = gr.Blocks() with app: gr.Markdown(top_md) with gr.Tab("Infer from audio"): gr.Markdown(infer_from_audio_md) with gr.Row(): with gr.Column(): textbox = gr.TextArea(label="Text", placeholder="Type your sentence here", value="Welcome back, Master. What can I do for you today?", elem_id=f"tts-input") language_dropdown = gr.Dropdown(choices=['auto-detect', 'English', '中文', '日本語'], value='auto-detect', label='language') accent_dropdown = gr.Dropdown(choices=['no-accent', 'English', '中文', '日本語'], value='no-accent', label='accent') textbox_transcript = gr.TextArea(label="Transcript", placeholder="Write transcript here. (leave empty to use whisper)", value="", elem_id=f"prompt-name") upload_audio_prompt = gr.Audio(label='uploaded audio prompt', source='upload', interactive=True) record_audio_prompt = gr.Audio(label='recorded audio prompt', source='microphone', interactive=True) with gr.Column(): text_output = gr.Textbox(label="Message") audio_output = gr.Audio(label="Output Audio", elem_id="tts-audio") btn = gr.Button("Generate!") btn.click(infer_from_audio, inputs=[textbox, language_dropdown, accent_dropdown, upload_audio_prompt, record_audio_prompt, textbox_transcript], outputs=[text_output, audio_output]) textbox_mp = gr.TextArea(label="Prompt name", placeholder="Name your prompt here", value="prompt_1", elem_id=f"prompt-name") btn_mp = gr.Button("Make prompt!") prompt_output = gr.File(interactive=False) btn_mp.click(make_npz_prompt, inputs=[textbox_mp, upload_audio_prompt, record_audio_prompt, textbox_transcript], outputs=[text_output, prompt_output]) gr.Examples(examples=infer_from_audio_examples, inputs=[textbox, language_dropdown, accent_dropdown, upload_audio_prompt, record_audio_prompt, textbox_transcript], outputs=[text_output, audio_output], fn=infer_from_audio, cache_examples=False,) with gr.Tab("Make prompt"): gr.Markdown(make_prompt_md) with gr.Row(): with gr.Column(): textbox2 = gr.TextArea(label="Prompt name", placeholder="Name your prompt here", value="prompt_1", elem_id=f"prompt-name") # 添加选择语言和输入台本的地方 textbox_transcript2 = gr.TextArea(label="Transcript", placeholder="Write transcript here. (leave empty to use whisper)", value="", elem_id=f"prompt-name") upload_audio_prompt_2 = gr.Audio(label='uploaded audio prompt', source='upload', interactive=True) record_audio_prompt_2 = gr.Audio(label='recorded audio prompt', source='microphone', interactive=True) with gr.Column(): text_output_2 = gr.Textbox(label="Message") prompt_output_2 = gr.File(interactive=False) btn_2 = gr.Button("Make!") btn_2.click(make_npz_prompt, inputs=[textbox2, upload_audio_prompt_2, record_audio_prompt_2, textbox_transcript2], outputs=[text_output_2, prompt_output_2]) gr.Examples(examples=make_npz_prompt_examples, inputs=[textbox2, upload_audio_prompt_2, record_audio_prompt_2, textbox_transcript2], outputs=[text_output_2, prompt_output_2], fn=make_npz_prompt, cache_examples=False,) with gr.Tab("Infer from prompt"): gr.Markdown(infer_from_prompt_md) with gr.Row(): with gr.Column(): textbox_3 = gr.TextArea(label="Text", placeholder="Type your sentence here", value="Welcome back, Master. What can I do for you today?", elem_id=f"tts-input") language_dropdown_3 = gr.Dropdown(choices=['auto-detect', 'English', '中文', '日本語', 'Mix'], value='auto-detect', label='language') accent_dropdown_3 = gr.Dropdown(choices=['no-accent', 'English', '中文', '日本語'], value='no-accent', label='accent') preset_dropdown_3 = gr.Dropdown(choices=preset_list, value=None, label='Voice preset') prompt_file = gr.File(file_count='single', file_types=['.npz'], interactive=True) with gr.Column(): text_output_3 = gr.Textbox(label="Message") audio_output_3 = gr.Audio(label="Output Audio", elem_id="tts-audio") btn_3 = gr.Button("Generate!") btn_3.click(infer_from_prompt, inputs=[textbox_3, language_dropdown_3, accent_dropdown_3, preset_dropdown_3, prompt_file], outputs=[text_output_3, audio_output_3]) gr.Examples(examples=infer_from_prompt_examples, inputs=[textbox_3, language_dropdown_3, accent_dropdown_3, preset_dropdown_3, prompt_file], outputs=[text_output_3, audio_output_3], fn=infer_from_prompt, cache_examples=False,) with gr.Tab("Infer long text"): gr.Markdown(long_text_md) with gr.Row(): with gr.Column(): textbox_4 = gr.TextArea(label="Text", placeholder="Type your sentence here", value=long_text_example, elem_id=f"tts-input") language_dropdown_4 = gr.Dropdown(choices=['auto-detect', 'English', '中文', '日本語'], value='auto-detect', label='language') accent_dropdown_4 = gr.Dropdown(choices=['no-accent', 'English', '中文', '日本語'], value='no-accent', label='accent') preset_dropdown_4 = gr.Dropdown(choices=preset_list, value=None, label='Voice preset') prompt_file_4 = gr.File(file_count='single', file_types=['.npz'], interactive=True) with gr.Column(): text_output_4 = gr.TextArea(label="Message") audio_output_4 = gr.Audio(label="Output Audio", elem_id="tts-audio") btn_4 = gr.Button("Generate!") btn_4.click(infer_long_text, inputs=[textbox_4, preset_dropdown_4, prompt_file_4, language_dropdown_4, accent_dropdown_4], outputs=[text_output_4, audio_output_4]) app.launch() if __name__ == "__main__": formatter = ( "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" ) logging.basicConfig(format=formatter, level=logging.INFO) main()