Spaces:
Runtime error
Runtime error
File size: 9,063 Bytes
2ef4b5e aae23b3 2ef4b5e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 |
import os
import random
import gradio as gr
import numpy as np
import torch
import torchaudio
from huggingface_hub import snapshot_download
from play_voice_inference.utils.voice_tokenizer import VoiceBpeTokenizer
from play_voice_inference.models.play_voice import LanguageIdentifiers, SpeakerAttributes, SpeechAttributes, load_play_voice
from play_voice_inference.utils.play_voice_sampler import PlayVoiceSampler
from play_voice_inference.utils.pv_diff_sampler import PlayVoiceDiffusionDecoderSampler
torch.set_grad_enabled(False)
device = torch.device('cuda')
HF_TOKEN = os.environ['HF_TOKEN']
print("Loading models...")
tokenizer = VoiceBpeTokenizer()
MODEL_DIR = snapshot_download('PlayHT/play-voice-v0-multi', token=HF_TOKEN)
PV_AR_PT = MODEL_DIR + '/pv-v1-ar.pth'
play_voice = load_play_voice(PV_AR_PT, device)
sampler = PlayVoiceSampler(play_voice).to(device)
NUM_DIFFUSION_STEPS: int = 150
DIFFUSION_PT = MODEL_DIR + '/pv-v1-diff-xf.pth'
DIFFUSION_VOCODER_PT = MODEL_DIR + '/pv-v1-diff-bigvgan.pt'
vocoder = PlayVoiceDiffusionDecoderSampler.from_path(
DIFFUSION_PT,
DIFFUSION_VOCODER_PT,
steps=NUM_DIFFUSION_STEPS,
silent=True,
use_fp16=True,
device=device
)
print("Preparing voices...")
VOICES_DIR = snapshot_download('PlayHT/play-voice-voices', repo_type='dataset', token=HF_TOKEN)
def load_audio(path: str, sr=24000):
audio, orig_sr = torchaudio.load(path)
if orig_sr != sr:
audio = torchaudio.transforms.Resample(orig_sr, sr)(audio)
return audio
def make_pcm(audio: torch.Tensor):
# Must convert to 16-bit PCM for gradio
# remove batch dim if any
# if len(audio.shape) > 2:
# audio = audio[0]
# audio = audio.transpose(0, 1) # gradio expects [samples, channels] and throws very unhelpful errors if it's wrong
gen_np = audio.squeeze().cpu().numpy()
i = np.iinfo("int16")
abs_max = 2 ** (i.bits - 1)
offset = i.min + abs_max
gen_np = (gen_np * abs_max + offset).clip(i.min, i.max).astype("int16")
return gen_np
initial_voices = []
for item in os.listdir(VOICES_DIR):
if item.endswith(".wav"):
name = os.path.splitext(item)[0]
initial_voices.append({"name": name, "audio": load_audio(os.path.join(VOICES_DIR, item))})
initial_voices.sort(key=lambda x: x["name"])
print(f"Found {len(initial_voices)} initial voices")
def get_voice_labels(voices: list[dict]):
labels = []
for voice in voices:
labels.append(voice["name"])
return labels
with gr.Blocks(analytics_enabled=False, title="Play Voice", mode="tts") as iface:
local_voices = gr.State(initial_voices)
def get_selected_voice_by_label(voices, label: str):
labels = get_voice_labels(voices)
for i, voice_label in enumerate(labels):
if voice_label == label:
return voices[i]
raise Exception("Voice not found: " + label)
def make_voice_dropdown(voices):
choices = get_voice_labels(voices)
return gr.Dropdown(
choices=choices,
value=choices[-1] if len(choices) > 0 else None,
label="Voice",
)
def make_enum_dropdown(enum, label, default=None, allow_none=False):
choices = [e.name for e in enum]
if allow_none:
choices.append("none")
return gr.Dropdown(
choices=choices,
value=default,
label=label,
)
def get_enum_value(enum, value):
if value == "none":
return None
return enum[value]
gr.Markdown("# Play Voice (pretrained)\n")
with gr.Tab("TTS"):
speak_text = gr.Textbox(lines=2, placeholder="What would you like to say?", label="Text")
speak_voice = make_voice_dropdown(initial_voices)
with gr.Accordion("Settings", open=False):
speaker_attributes = make_enum_dropdown(
SpeakerAttributes, "Speaker Attributes", "full_sentence", allow_none=True
)
speech_attributes = make_enum_dropdown(SpeechAttributes, "Speech Attributes", "none", allow_none=True)
language = make_enum_dropdown(LanguageIdentifiers, "Language", "none", allow_none=True)
temperature = gr.Slider(minimum=0, maximum=2.0, value=0.3, label="Temperature")
repetition_penalty = gr.Slider(minimum=1.0, maximum=10.0, value=1.8, label="Repetition Penalty")
filter_thresh = gr.Slider(minimum=0.1, maximum=1.0, value=0.75, label="Top-p Threshold")
voice_guidance = gr.Slider(minimum=0.0, maximum=6.0, value=0.4, label="Voice Guidance")
style_guidance = gr.Slider(minimum=0.0, maximum=6.0, value=0.1, label="Style Guidance")
text_guidance = gr.Slider(minimum=0.0, maximum=6.0, value=0.6, label="Text Guidance")
speak_submit = gr.Button("Speak!")
speak_result = gr.Audio(label="Result", interactive=False)
ref_voice = gr.Audio(label="Reference Voice", interactive=False)
@torch.no_grad()
def handle_speak(
text,
voices,
voice_name,
voice_guidance,
speaker_attributes,
speech_attributes,
language,
temperature,
repetition_penalty,
top_p,
style_guidance,
text_guidance,
):
if text.strip() == "":
text = "I am PlayVoice, the voice of the future. Feed me your words and I will speak them, hahahaha!"
voice = get_selected_voice_by_label(voices, voice_name)
seed = random.randint(0, 2**32 - 1)
print(f"Voice: {voice['name']} Text: {text}")
voice_emb = sampler.get_voice_embedding(voice["audio"])
text_tokens = []
text_tokens.append(torch.tensor(tokenizer.encode(text), dtype=torch.int, device=device))
text_tokens = torch.nn.utils.rnn.pad_sequence(text_tokens, batch_first=True, padding_value=0)
torch.manual_seed(seed)
sample_result = sampler.sample_batched(
text_tokens=text_tokens,
text_guidance=text_guidance,
voice_emb=voice_emb,
voice_guidance=voice_guidance,
speaker_attributes=get_enum_value(SpeakerAttributes, speaker_attributes),
speech_attributes=get_enum_value(SpeechAttributes, speech_attributes),
language_identifier=get_enum_value(LanguageIdentifiers, language),
style_guidance=float(style_guidance),
temperature=float(temperature),
repetition_penalty=float(repetition_penalty),
top_p=float(top_p),
)
latents = sample_result["latents"]
audio = vocoder.sample(text_tokens, latents, ref_wav=voice["audio"])
audio = make_pcm(audio)
return {
speak_result: (vocoder.OUTPUT_FREQUENCY, audio),
ref_voice: (22050, make_pcm(voice["audio"])),
}
speak_submit.click(
handle_speak,
inputs=[
speak_text,
local_voices,
speak_voice,
voice_guidance,
speaker_attributes,
speech_attributes,
language,
temperature,
repetition_penalty,
filter_thresh,
style_guidance,
text_guidance,
],
outputs=[
speak_result,
ref_voice,
],
)
with gr.Tab("Clone Voice"):
new_voice_name = gr.Textbox(value="cloned-voice", label="Voice Name")
new_voice_audio = gr.Audio(label="Voice Audio (20s min, ideally 30s, anything longer will be truncated)",
sources=["upload", "microphone"],
)
new_voice_submit = gr.Button("Create!")
new_voice_result = gr.Label("")
def on_new_voice_submit(voices, name, raw_audio):
assert raw_audio is not None, "Must provide audio"
sr = raw_audio[0]
torch_audio = torch.from_numpy(raw_audio[1]).float() / 32768.0
if torch_audio.ndim == 1:
torch_audio = torch_audio.unsqueeze(0)
else:
torch_audio = torch_audio.transpose(0, 1).mean(dim=0, keepdim=True)
if sr != 24000:
if sr < 16000:
raise Exception(
"Garbage in, garbage out. Please provide audio with a sample rate of at least 16kHz, ideally 24kHz."
)
torch_audio = torchaudio.transforms.Resample(sr, 24000)(torch_audio)
# trim to 30s
if torch_audio.shape[1] > 24000 * 30:
torch_audio = torch_audio[:, : 24000 * 30]
# add to local voices
voices.append({"name": name, "audio": torch_audio})
return {
speak_voice: make_voice_dropdown(voices),
new_voice_result: f"Created voice {name}",
}
new_voice_submit.click(
on_new_voice_submit,
inputs = [
local_voices,
new_voice_name,
new_voice_audio
],
outputs=[
speak_voice,
new_voice_result
]
)
iface.launch(show_error=True, share=False)
|