|
import torch |
|
from torch.nn.utils import remove_weight_norm |
|
from torch.nn.utils.parametrizations import weight_norm |
|
from typing import Optional |
|
|
|
from rvc.lib.algorithm.residuals import LRELU_SLOPE, ResBlock1, ResBlock2 |
|
from rvc.lib.algorithm.commons import init_weights |
|
|
|
|
|
class Generator(torch.nn.Module): |
|
"""Generator for synthesizing audio. |
|
|
|
Args: |
|
initial_channel (int): Number of channels in the initial convolutional layer. |
|
resblock (str): Type of residual block to use (1 or 2). |
|
resblock_kernel_sizes (list): Kernel sizes of the residual blocks. |
|
resblock_dilation_sizes (list): Dilation rates of the residual blocks. |
|
upsample_rates (list): Upsampling rates. |
|
upsample_initial_channel (int): Number of channels in the initial upsampling layer. |
|
upsample_kernel_sizes (list): Kernel sizes of the upsampling layers. |
|
gin_channels (int, optional): Number of channels for the global conditioning input. Defaults to 0. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
initial_channel, |
|
resblock, |
|
resblock_kernel_sizes, |
|
resblock_dilation_sizes, |
|
upsample_rates, |
|
upsample_initial_channel, |
|
upsample_kernel_sizes, |
|
gin_channels=0, |
|
): |
|
super(Generator, self).__init__() |
|
self.num_kernels = len(resblock_kernel_sizes) |
|
self.num_upsamples = len(upsample_rates) |
|
self.conv_pre = torch.nn.Conv1d( |
|
initial_channel, upsample_initial_channel, 7, 1, padding=3 |
|
) |
|
resblock = ResBlock1 if resblock == "1" else ResBlock2 |
|
|
|
self.ups = torch.nn.ModuleList() |
|
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)): |
|
self.ups.append( |
|
weight_norm( |
|
torch.nn.ConvTranspose1d( |
|
upsample_initial_channel // (2**i), |
|
upsample_initial_channel // (2 ** (i + 1)), |
|
k, |
|
u, |
|
padding=(k - u) // 2, |
|
) |
|
) |
|
) |
|
|
|
self.resblocks = torch.nn.ModuleList() |
|
for i in range(len(self.ups)): |
|
ch = upsample_initial_channel // (2 ** (i + 1)) |
|
for j, (k, d) in enumerate( |
|
zip(resblock_kernel_sizes, resblock_dilation_sizes) |
|
): |
|
self.resblocks.append(resblock(ch, k, d)) |
|
|
|
self.conv_post = torch.nn.Conv1d(ch, 1, 7, 1, padding=3, bias=False) |
|
self.ups.apply(init_weights) |
|
|
|
if gin_channels != 0: |
|
self.cond = torch.nn.Conv1d(gin_channels, upsample_initial_channel, 1) |
|
|
|
def forward(self, x: torch.Tensor, g: Optional[torch.Tensor] = None): |
|
x = self.conv_pre(x) |
|
if g is not None: |
|
x = x + self.cond(g) |
|
|
|
for i in range(self.num_upsamples): |
|
x = torch.nn.functional.leaky_relu(x, LRELU_SLOPE) |
|
x = self.ups[i](x) |
|
xs = None |
|
for j in range(self.num_kernels): |
|
if xs is None: |
|
xs = self.resblocks[i * self.num_kernels + j](x) |
|
else: |
|
xs += self.resblocks[i * self.num_kernels + j](x) |
|
x = xs / self.num_kernels |
|
x = torch.nn.functional.leaky_relu(x) |
|
x = self.conv_post(x) |
|
x = torch.tanh(x) |
|
|
|
return x |
|
|
|
def __prepare_scriptable__(self): |
|
"""Prepares the module for scripting.""" |
|
for l in self.ups: |
|
for hook in l._forward_pre_hooks.values(): |
|
if ( |
|
hook.__module__ == "torch.nn.utils.parametrizations.weight_norm" |
|
and hook.__class__.__name__ == "WeightNorm" |
|
): |
|
torch.nn.utils.remove_weight_norm(l) |
|
|
|
for l in self.resblocks: |
|
for hook in l._forward_pre_hooks.values(): |
|
if ( |
|
hook.__module__ == "torch.nn.utils.parametrizations.weight_norm" |
|
and hook.__class__.__name__ == "WeightNorm" |
|
): |
|
torch.nn.utils.remove_weight_norm(l) |
|
return self |
|
|
|
def remove_weight_norm(self): |
|
"""Removes weight normalization from the upsampling and residual blocks.""" |
|
for l in self.ups: |
|
remove_weight_norm(l) |
|
for l in self.resblocks: |
|
l.remove_weight_norm() |
|
|
|
|
|
class SineGen(torch.nn.Module): |
|
"""Sine wave generator. |
|
|
|
Args: |
|
samp_rate (int): Sampling rate in Hz. |
|
harmonic_num (int, optional): Number of harmonic overtones. Defaults to 0. |
|
sine_amp (float, optional): Amplitude of sine waveform. Defaults to 0.1. |
|
noise_std (float, optional): Standard deviation of Gaussian noise. Defaults to 0.003. |
|
voiced_threshold (float, optional): F0 threshold for voiced/unvoiced classification. Defaults to 0. |
|
flag_for_pulse (bool, optional): Whether this SineGen is used inside PulseGen. Defaults to False. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
samp_rate, |
|
harmonic_num=0, |
|
sine_amp=0.1, |
|
noise_std=0.003, |
|
voiced_threshold=0, |
|
flag_for_pulse=False, |
|
): |
|
super(SineGen, self).__init__() |
|
self.sine_amp = sine_amp |
|
self.noise_std = noise_std |
|
self.harmonic_num = harmonic_num |
|
self.dim = self.harmonic_num + 1 |
|
self.sample_rate = samp_rate |
|
self.voiced_threshold = voiced_threshold |
|
|
|
def _f02uv(self, f0): |
|
"""Converts F0 to voiced/unvoiced signal. |
|
|
|
Args: |
|
f0 (torch.Tensor): F0 tensor with shape (batch_size, length, 1).. |
|
""" |
|
|
|
uv = torch.ones_like(f0) |
|
uv = uv * (f0 > self.voiced_threshold) |
|
return uv |
|
|
|
def forward(self, f0: torch.Tensor, upp: int): |
|
"""Generates sine waves. |
|
|
|
Args: |
|
f0 (torch.Tensor): F0 tensor with shape (batch_size, length, 1). |
|
upp (int): Upsampling factor. |
|
""" |
|
with torch.no_grad(): |
|
f0 = f0[:, None].transpose(1, 2) |
|
f0_buf = torch.zeros(f0.shape[0], f0.shape[1], self.dim, device=f0.device) |
|
|
|
f0_buf[:, :, 0] = f0[:, :, 0] |
|
for idx in range(self.harmonic_num): |
|
f0_buf[:, :, idx + 1] = f0_buf[:, :, 0] * ( |
|
idx + 2 |
|
) |
|
rad_values = (f0_buf / float(self.sample_rate)) % 1 |
|
rand_ini = torch.rand( |
|
f0_buf.shape[0], f0_buf.shape[2], device=f0_buf.device |
|
) |
|
rand_ini[:, 0] = 0 |
|
rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini |
|
tmp_over_one = torch.cumsum(rad_values, 1) |
|
tmp_over_one *= upp |
|
tmp_over_one = torch.nn.functional.interpolate( |
|
tmp_over_one.transpose(2, 1), |
|
scale_factor=float(upp), |
|
mode="linear", |
|
align_corners=True, |
|
).transpose(2, 1) |
|
rad_values = torch.nn.functional.interpolate( |
|
rad_values.transpose(2, 1), scale_factor=float(upp), mode="nearest" |
|
).transpose(2, 1) |
|
tmp_over_one %= 1 |
|
tmp_over_one_idx = (tmp_over_one[:, 1:, :] - tmp_over_one[:, :-1, :]) < 0 |
|
cumsum_shift = torch.zeros_like(rad_values) |
|
cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0 |
|
sine_waves = torch.sin( |
|
torch.cumsum(rad_values + cumsum_shift, dim=1) * 2 * torch.pi |
|
) |
|
sine_waves = sine_waves * self.sine_amp |
|
uv = self._f02uv(f0) |
|
uv = torch.nn.functional.interpolate( |
|
uv.transpose(2, 1), scale_factor=float(upp), mode="nearest" |
|
).transpose(2, 1) |
|
noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3 |
|
noise = noise_amp * torch.randn_like(sine_waves) |
|
sine_waves = sine_waves * uv + noise |
|
return sine_waves, uv, noise |
|
|