|
import math |
|
import torch |
|
from torch.nn.utils import remove_weight_norm |
|
from torch.nn.utils.parametrizations import weight_norm |
|
from typing import Optional |
|
|
|
from rvc.lib.algorithm.generators import SineGen |
|
from rvc.lib.algorithm.residuals import LRELU_SLOPE, ResBlock1, ResBlock2 |
|
from rvc.lib.algorithm.commons import init_weights |
|
|
|
|
|
class SourceModuleHnNSF(torch.nn.Module): |
|
""" |
|
Source Module for harmonic-plus-noise excitation. |
|
|
|
Args: |
|
sample_rate (int): Sampling rate in Hz. |
|
harmonic_num (int, optional): Number of harmonics above F0. Defaults to 0. |
|
sine_amp (float, optional): Amplitude of sine source signal. Defaults to 0.1. |
|
add_noise_std (float, optional): Standard deviation of additive Gaussian noise. Defaults to 0.003. |
|
voiced_threshod (float, optional): Threshold to set voiced/unvoiced given F0. Defaults to 0. |
|
is_half (bool, optional): Whether to use half precision. Defaults to True. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
sample_rate, |
|
harmonic_num=0, |
|
sine_amp=0.1, |
|
add_noise_std=0.003, |
|
voiced_threshod=0, |
|
is_half=True, |
|
): |
|
super(SourceModuleHnNSF, self).__init__() |
|
|
|
self.sine_amp = sine_amp |
|
self.noise_std = add_noise_std |
|
self.is_half = is_half |
|
|
|
self.l_sin_gen = SineGen( |
|
sample_rate, harmonic_num, sine_amp, add_noise_std, voiced_threshod |
|
) |
|
self.l_linear = torch.nn.Linear(harmonic_num + 1, 1) |
|
self.l_tanh = torch.nn.Tanh() |
|
|
|
def forward(self, x: torch.Tensor, upp: int = 1): |
|
sine_wavs, uv, _ = self.l_sin_gen(x, upp) |
|
sine_wavs = sine_wavs.to(dtype=self.l_linear.weight.dtype) |
|
sine_merge = self.l_tanh(self.l_linear(sine_wavs)) |
|
return sine_merge, None, None |
|
|
|
|
|
class GeneratorNSF(torch.nn.Module): |
|
""" |
|
Generator for synthesizing audio using the NSF (Neural Source Filter) approach. |
|
|
|
Args: |
|
initial_channel (int): Number of channels in the initial convolutional layer. |
|
resblock (str): Type of residual block to use (1 or 2). |
|
resblock_kernel_sizes (list): Kernel sizes of the residual blocks. |
|
resblock_dilation_sizes (list): Dilation rates of the residual blocks. |
|
upsample_rates (list): Upsampling rates. |
|
upsample_initial_channel (int): Number of channels in the initial upsampling layer. |
|
upsample_kernel_sizes (list): Kernel sizes of the upsampling layers. |
|
gin_channels (int): Number of channels for the global conditioning input. |
|
sr (int): Sampling rate. |
|
is_half (bool, optional): Whether to use half precision. Defaults to False. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
initial_channel, |
|
resblock, |
|
resblock_kernel_sizes, |
|
resblock_dilation_sizes, |
|
upsample_rates, |
|
upsample_initial_channel, |
|
upsample_kernel_sizes, |
|
gin_channels, |
|
sr, |
|
is_half=False, |
|
): |
|
super(GeneratorNSF, self).__init__() |
|
|
|
self.num_kernels = len(resblock_kernel_sizes) |
|
self.num_upsamples = len(upsample_rates) |
|
self.f0_upsamp = torch.nn.Upsample(scale_factor=math.prod(upsample_rates)) |
|
self.m_source = SourceModuleHnNSF( |
|
sample_rate=sr, harmonic_num=0, is_half=is_half |
|
) |
|
|
|
self.conv_pre = torch.nn.Conv1d( |
|
initial_channel, upsample_initial_channel, 7, 1, padding=3 |
|
) |
|
resblock_cls = ResBlock1 if resblock == "1" else ResBlock2 |
|
|
|
self.ups = torch.nn.ModuleList() |
|
self.noise_convs = torch.nn.ModuleList() |
|
|
|
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)): |
|
current_channel = upsample_initial_channel // (2 ** (i + 1)) |
|
self.ups.append( |
|
weight_norm( |
|
torch.nn.ConvTranspose1d( |
|
upsample_initial_channel // (2**i), |
|
current_channel, |
|
k, |
|
u, |
|
padding=(k - u) // 2, |
|
) |
|
) |
|
) |
|
|
|
stride_f0 = ( |
|
math.prod(upsample_rates[i + 1 :]) if i + 1 < len(upsample_rates) else 1 |
|
) |
|
self.noise_convs.append( |
|
torch.nn.Conv1d( |
|
1, |
|
current_channel, |
|
kernel_size=stride_f0 * 2 if stride_f0 > 1 else 1, |
|
stride=stride_f0, |
|
padding=(stride_f0 // 2 if stride_f0 > 1 else 0), |
|
) |
|
) |
|
|
|
self.resblocks = torch.nn.ModuleList( |
|
[ |
|
resblock_cls(upsample_initial_channel // (2 ** (i + 1)), k, d) |
|
for i in range(len(self.ups)) |
|
for k, d in zip(resblock_kernel_sizes, resblock_dilation_sizes) |
|
] |
|
) |
|
|
|
self.conv_post = torch.nn.Conv1d( |
|
current_channel, 1, 7, 1, padding=3, bias=False |
|
) |
|
self.ups.apply(init_weights) |
|
|
|
if gin_channels != 0: |
|
self.cond = torch.nn.Conv1d(gin_channels, upsample_initial_channel, 1) |
|
|
|
self.upp = math.prod(upsample_rates) |
|
self.lrelu_slope = LRELU_SLOPE |
|
|
|
def forward(self, x, f0, g: Optional[torch.Tensor] = None): |
|
har_source, _, _ = self.m_source(f0, self.upp) |
|
har_source = har_source.transpose(1, 2) |
|
x = self.conv_pre(x) |
|
|
|
if g is not None: |
|
x = x + self.cond(g) |
|
|
|
for i, (ups, noise_convs) in enumerate(zip(self.ups, self.noise_convs)): |
|
x = torch.nn.functional.leaky_relu(x, self.lrelu_slope) |
|
x = ups(x) |
|
x = x + noise_convs(har_source) |
|
|
|
xs = sum( |
|
[ |
|
resblock(x) |
|
for j, resblock in enumerate(self.resblocks) |
|
if j in range(i * self.num_kernels, (i + 1) * self.num_kernels) |
|
] |
|
) |
|
x = xs / self.num_kernels |
|
|
|
x = torch.nn.functional.leaky_relu(x) |
|
x = torch.tanh(self.conv_post(x)) |
|
return x |
|
|
|
def remove_weight_norm(self): |
|
for l in self.ups: |
|
remove_weight_norm(l) |
|
for l in self.resblocks: |
|
l.remove_weight_norm() |
|
|
|
def __prepare_scriptable__(self): |
|
for l in self.ups: |
|
for hook in l._forward_pre_hooks.values(): |
|
if ( |
|
hook.__module__ == "torch.nn.utils.parametrizations.weight_norm" |
|
and hook.__class__.__name__ == "WeightNorm" |
|
): |
|
remove_weight_norm(l) |
|
for l in self.resblocks: |
|
for hook in l._forward_pre_hooks.values(): |
|
if ( |
|
hook.__module__ == "torch.nn.utils.parametrizations.weight_norm" |
|
and hook.__class__.__name__ == "WeightNorm" |
|
): |
|
remove_weight_norm(l) |
|
return self |
|
|