Spaces:
Sleeping
Sleeping
Pclanglais
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
import transformers
|
2 |
import re
|
3 |
-
from transformers import AutoConfig, AutoTokenizer, AutoModel, AutoModelForCausalLM
|
4 |
from vllm import LLM, SamplingParams
|
5 |
import torch
|
6 |
import gradio as gr
|
@@ -8,34 +8,39 @@ import json
|
|
8 |
import os
|
9 |
import shutil
|
10 |
import requests
|
11 |
-
import chromadb
|
12 |
-
import difflib
|
13 |
import pandas as pd
|
14 |
-
|
15 |
-
from chromadb.utils import embedding_functions
|
16 |
|
17 |
# Define the device
|
18 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
19 |
|
20 |
-
|
|
|
|
|
21 |
|
22 |
-
|
|
|
|
|
|
|
|
|
23 |
|
24 |
-
|
25 |
-
|
|
|
26 |
css = """
|
|
|
27 |
.generation {
|
28 |
-
margin-left:2em;
|
29 |
-
margin-right:2em;
|
30 |
-
size:1.2em;
|
31 |
}
|
32 |
:target {
|
33 |
background-color: #CCF3DF;
|
34 |
}
|
35 |
.source {
|
36 |
-
float:left;
|
37 |
-
max-width:17%;
|
38 |
-
margin-left:2%;
|
39 |
}
|
40 |
.tooltip {
|
41 |
position: relative;
|
@@ -43,7 +48,6 @@ css = """
|
|
43 |
font-variant-position: super;
|
44 |
color: #97999b;
|
45 |
}
|
46 |
-
|
47 |
.tooltip:hover::after {
|
48 |
content: attr(data-text);
|
49 |
position: absolute;
|
@@ -61,7 +65,6 @@ css = """
|
|
61 |
display: block;
|
62 |
box-shadow: 0 4px 8px rgba(0,0,0,0.1);
|
63 |
}
|
64 |
-
/* New styles for diff */
|
65 |
.deleted {
|
66 |
background-color: #ffcccb;
|
67 |
text-decoration: line-through;
|
@@ -69,75 +72,186 @@ css = """
|
|
69 |
.inserted {
|
70 |
background-color: #90EE90;
|
71 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
"""
|
73 |
|
74 |
-
#
|
75 |
def generate_html_diff(old_text, new_text):
|
76 |
d = difflib.Differ()
|
77 |
diff = list(d.compare(old_text.split(), new_text.split()))
|
78 |
-
|
79 |
html_diff = []
|
80 |
for word in diff:
|
81 |
-
if word.startswith('
|
82 |
html_diff.append(word[2:])
|
83 |
elif word.startswith('+ '):
|
84 |
html_diff.append(f'<span style="background-color: #90EE90;">{word[2:]}</span>')
|
85 |
-
# We're not adding anything for words that start with '- '
|
86 |
-
|
87 |
return ' '.join(html_diff)
|
88 |
|
89 |
-
|
90 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
def __init__(self, system_prompt="Le dialogue suivant est une conversation"):
|
92 |
self.system_prompt = system_prompt
|
93 |
|
94 |
-
def
|
95 |
sampling_params = SamplingParams(temperature=0.9, top_p=0.95, max_tokens=4000, presence_penalty=0, stop=["#END#"])
|
96 |
detailed_prompt = f"### TEXT ###\n{user_message}\n\n### CORRECTION ###\n"
|
97 |
-
print(detailed_prompt)
|
98 |
prompts = [detailed_prompt]
|
99 |
-
outputs =
|
100 |
generated_text = outputs[0].outputs[0].text
|
101 |
-
|
102 |
-
# Generate HTML diff
|
103 |
html_diff = generate_html_diff(user_message, generated_text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
|
105 |
-
|
106 |
-
return
|
107 |
|
108 |
-
# Create the
|
109 |
-
|
110 |
|
111 |
# Define the Gradio interface
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
]
|
119 |
-
]
|
120 |
-
|
121 |
-
additional_inputs=[
|
122 |
-
gr.Slider(
|
123 |
-
label="Température",
|
124 |
-
value=0.2, # Default value
|
125 |
-
minimum=0.05,
|
126 |
-
maximum=1.0,
|
127 |
-
step=0.05,
|
128 |
-
interactive=True,
|
129 |
-
info="Des valeurs plus élevées donne plus de créativité, mais aussi d'étrangeté",
|
130 |
-
),
|
131 |
-
]
|
132 |
-
|
133 |
-
demo = gr.Blocks()
|
134 |
-
|
135 |
-
with gr.Blocks(theme='JohnSmith9982/small_and_pretty', css=css) as demo:
|
136 |
-
gr.HTML("""<h1 style="text-align:center">Correction d'OCR</h1>""")
|
137 |
-
text_input = gr.Textbox(label="Votre texte.", type="text", lines=1)
|
138 |
-
text_button = gr.Button("Corriger l'OCR")
|
139 |
-
text_output = gr.HTML(label="Le texte corrigé")
|
140 |
-
text_button.click(mistral_bot.predict, inputs=text_input, outputs=[text_output])
|
141 |
|
142 |
if __name__ == "__main__":
|
143 |
demo.queue().launch()
|
|
|
1 |
import transformers
|
2 |
import re
|
3 |
+
from transformers import AutoConfig, AutoTokenizer, AutoModel, AutoModelForCausalLM, pipeline
|
4 |
from vllm import LLM, SamplingParams
|
5 |
import torch
|
6 |
import gradio as gr
|
|
|
8 |
import os
|
9 |
import shutil
|
10 |
import requests
|
|
|
|
|
11 |
import pandas as pd
|
12 |
+
import difflib
|
|
|
13 |
|
14 |
# Define the device
|
15 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
16 |
|
17 |
+
# OCR Correction Model
|
18 |
+
ocr_model_name = "Pclanglais/ocronos2"
|
19 |
+
ocr_llm = LLM(ocr_model_name, max_model_len=8128)
|
20 |
|
21 |
+
# Editorial Segmentation Model
|
22 |
+
editorial_model = "PleIAs/Estienne"
|
23 |
+
token_classifier = pipeline(
|
24 |
+
"token-classification", model=editorial_model, aggregation_strategy="simple", device=device
|
25 |
+
)
|
26 |
|
27 |
+
tokenizer = AutoTokenizer.from_pretrained(editorial_model, model_max_length=512)
|
28 |
+
|
29 |
+
# CSS for formatting
|
30 |
css = """
|
31 |
+
<style>
|
32 |
.generation {
|
33 |
+
margin-left: 2em;
|
34 |
+
margin-right: 2em;
|
35 |
+
font-size: 1.2em;
|
36 |
}
|
37 |
:target {
|
38 |
background-color: #CCF3DF;
|
39 |
}
|
40 |
.source {
|
41 |
+
float: left;
|
42 |
+
max-width: 17%;
|
43 |
+
margin-left: 2%;
|
44 |
}
|
45 |
.tooltip {
|
46 |
position: relative;
|
|
|
48 |
font-variant-position: super;
|
49 |
color: #97999b;
|
50 |
}
|
|
|
51 |
.tooltip:hover::after {
|
52 |
content: attr(data-text);
|
53 |
position: absolute;
|
|
|
65 |
display: block;
|
66 |
box-shadow: 0 4px 8px rgba(0,0,0,0.1);
|
67 |
}
|
|
|
68 |
.deleted {
|
69 |
background-color: #ffcccb;
|
70 |
text-decoration: line-through;
|
|
|
72 |
.inserted {
|
73 |
background-color: #90EE90;
|
74 |
}
|
75 |
+
.manuscript {
|
76 |
+
display: flex;
|
77 |
+
margin-bottom: 10px;
|
78 |
+
align-items: baseline;
|
79 |
+
}
|
80 |
+
.annotation {
|
81 |
+
width: 15%;
|
82 |
+
padding-right: 20px;
|
83 |
+
color: grey !important;
|
84 |
+
font-style: italic;
|
85 |
+
text-align: right;
|
86 |
+
}
|
87 |
+
.content {
|
88 |
+
width: 80%;
|
89 |
+
}
|
90 |
+
h2 {
|
91 |
+
margin: 0;
|
92 |
+
font-size: 1.5em;
|
93 |
+
}
|
94 |
+
.title-content h2 {
|
95 |
+
font-weight: bold;
|
96 |
+
}
|
97 |
+
.bibliography-content {
|
98 |
+
color: darkgreen !important;
|
99 |
+
margin-top: -5px;
|
100 |
+
}
|
101 |
+
.paratext-content {
|
102 |
+
color: #a4a4a4 !important;
|
103 |
+
margin-top: -5px;
|
104 |
+
}
|
105 |
+
</style>
|
106 |
"""
|
107 |
|
108 |
+
# Helper functions
|
109 |
def generate_html_diff(old_text, new_text):
|
110 |
d = difflib.Differ()
|
111 |
diff = list(d.compare(old_text.split(), new_text.split()))
|
|
|
112 |
html_diff = []
|
113 |
for word in diff:
|
114 |
+
if word.startswith(' '):
|
115 |
html_diff.append(word[2:])
|
116 |
elif word.startswith('+ '):
|
117 |
html_diff.append(f'<span style="background-color: #90EE90;">{word[2:]}</span>')
|
|
|
|
|
118 |
return ' '.join(html_diff)
|
119 |
|
120 |
+
def preprocess_text(text):
|
121 |
+
text = re.sub(r'<[^>]+>', '', text)
|
122 |
+
text = re.sub(r'\n', ' ', text)
|
123 |
+
text = re.sub(r'\s+', ' ', text)
|
124 |
+
return text.strip()
|
125 |
+
|
126 |
+
def split_text(text, max_tokens=500):
|
127 |
+
parts = text.split("\n")
|
128 |
+
chunks = []
|
129 |
+
current_chunk = ""
|
130 |
+
|
131 |
+
for part in parts:
|
132 |
+
if current_chunk:
|
133 |
+
temp_chunk = current_chunk + "\n" + part
|
134 |
+
else:
|
135 |
+
temp_chunk = part
|
136 |
+
|
137 |
+
num_tokens = len(tokenizer.tokenize(temp_chunk))
|
138 |
+
|
139 |
+
if num_tokens <= max_tokens:
|
140 |
+
current_chunk = temp_chunk
|
141 |
+
else:
|
142 |
+
if current_chunk:
|
143 |
+
chunks.append(current_chunk)
|
144 |
+
current_chunk = part
|
145 |
+
|
146 |
+
if current_chunk:
|
147 |
+
chunks.append(current_chunk)
|
148 |
+
|
149 |
+
if len(chunks) == 1 and len(tokenizer.tokenize(chunks[0])) > max_tokens:
|
150 |
+
long_text = chunks[0]
|
151 |
+
chunks = []
|
152 |
+
while len(tokenizer.tokenize(long_text)) > max_tokens:
|
153 |
+
split_point = len(long_text) // 2
|
154 |
+
while split_point < len(long_text) and not re.match(r'\s', long_text[split_point]):
|
155 |
+
split_point += 1
|
156 |
+
if split_point >= len(long_text):
|
157 |
+
split_point = len(long_text) - 1
|
158 |
+
chunks.append(long_text[:split_point].strip())
|
159 |
+
long_text = long_text[split_point:].strip()
|
160 |
+
if long_text:
|
161 |
+
chunks.append(long_text)
|
162 |
+
|
163 |
+
return chunks
|
164 |
+
|
165 |
+
def transform_chunks(marianne_segmentation):
|
166 |
+
marianne_segmentation = pd.DataFrame(marianne_segmentation)
|
167 |
+
marianne_segmentation = marianne_segmentation[marianne_segmentation['entity_group'] != 'separator']
|
168 |
+
marianne_segmentation['word'] = marianne_segmentation['word'].astype(str).str.replace('¶', '\n', regex=False)
|
169 |
+
marianne_segmentation['word'] = marianne_segmentation['word'].astype(str).apply(preprocess_text)
|
170 |
+
marianne_segmentation = marianne_segmentation[marianne_segmentation['word'].notna() & (marianne_segmentation['word'] != '') & (marianne_segmentation['word'] != ' ')]
|
171 |
+
|
172 |
+
html_output = []
|
173 |
+
for _, row in marianne_segmentation.iterrows():
|
174 |
+
entity_group = row['entity_group']
|
175 |
+
result_entity = "[" + entity_group.capitalize() + "]"
|
176 |
+
word = row['word']
|
177 |
+
|
178 |
+
if entity_group == 'title':
|
179 |
+
html_output.append(f'<div class="manuscript"><div class="annotation">{result_entity}</div><div class="content title-content"><h2>{word}</h2></div></div>')
|
180 |
+
elif entity_group == 'bibliography':
|
181 |
+
html_output.append(f'<div class="manuscript"><div class="annotation">{result_entity}</div><div class="content bibliography-content">{word}</div></div>')
|
182 |
+
elif entity_group == 'paratext':
|
183 |
+
html_output.append(f'<div class="manuscript"><div class="annotation">{result_entity}</div><div class="content paratext-content">{word}</div></div>')
|
184 |
+
else:
|
185 |
+
html_output.append(f'<div class="manuscript"><div class="annotation">{result_entity}</div><div class="content">{word}</div></div>')
|
186 |
+
|
187 |
+
final_html = '\n'.join(html_output)
|
188 |
+
return final_html
|
189 |
+
|
190 |
+
# OCR Correction Class
|
191 |
+
class OCRCorrector:
|
192 |
def __init__(self, system_prompt="Le dialogue suivant est une conversation"):
|
193 |
self.system_prompt = system_prompt
|
194 |
|
195 |
+
def correct(self, user_message):
|
196 |
sampling_params = SamplingParams(temperature=0.9, top_p=0.95, max_tokens=4000, presence_penalty=0, stop=["#END#"])
|
197 |
detailed_prompt = f"### TEXT ###\n{user_message}\n\n### CORRECTION ###\n"
|
|
|
198 |
prompts = [detailed_prompt]
|
199 |
+
outputs = ocr_llm.generate(prompts, sampling_params, use_tqdm=False)
|
200 |
generated_text = outputs[0].outputs[0].text
|
|
|
|
|
201 |
html_diff = generate_html_diff(user_message, generated_text)
|
202 |
+
return generated_text, html_diff
|
203 |
+
|
204 |
+
# Editorial Segmentation Class
|
205 |
+
class EditorialSegmenter:
|
206 |
+
def segment(self, text):
|
207 |
+
editorial_text = re.sub("\n", " ¶ ", text)
|
208 |
+
num_tokens = len(tokenizer.tokenize(editorial_text))
|
209 |
+
|
210 |
+
if num_tokens > 500:
|
211 |
+
batch_prompts = split_text(editorial_text, max_tokens=500)
|
212 |
+
else:
|
213 |
+
batch_prompts = [editorial_text]
|
214 |
+
|
215 |
+
out = token_classifier(batch_prompts)
|
216 |
+
classified_list = []
|
217 |
+
for classification in out:
|
218 |
+
df = pd.DataFrame(classification)
|
219 |
+
classified_list.append(df)
|
220 |
+
|
221 |
+
classified_list = pd.concat(classified_list)
|
222 |
+
out = transform_chunks(classified_list)
|
223 |
+
return out
|
224 |
+
|
225 |
+
# Combined Processing Class
|
226 |
+
class TextProcessor:
|
227 |
+
def __init__(self):
|
228 |
+
self.ocr_corrector = OCRCorrector()
|
229 |
+
self.editorial_segmenter = EditorialSegmenter()
|
230 |
+
|
231 |
+
def process(self, user_message):
|
232 |
+
# Step 1: OCR Correction
|
233 |
+
corrected_text, html_diff = self.ocr_corrector.correct(user_message)
|
234 |
+
|
235 |
+
# Step 2: Editorial Segmentation
|
236 |
+
segmented_text = self.editorial_segmenter.segment(corrected_text)
|
237 |
+
|
238 |
+
# Combine results
|
239 |
+
ocr_result = f'<h2 style="text-align:center">OCR Correction</h2>\n<div class="generation">{html_diff}</div>'
|
240 |
+
editorial_result = f'<h2 style="text-align:center">Editorial Segmentation</h2>\n<div class="generation">{segmented_text}</div>'
|
241 |
|
242 |
+
final_output = f"{css}{ocr_result}<br><br>{editorial_result}"
|
243 |
+
return final_output
|
244 |
|
245 |
+
# Create the TextProcessor instance
|
246 |
+
text_processor = TextProcessor()
|
247 |
|
248 |
# Define the Gradio interface
|
249 |
+
with gr.Blocks(theme='JohnSmith9982/small_and_pretty') as demo:
|
250 |
+
gr.HTML("""<h1 style="text-align:center">LM Document Processing</h1>""")
|
251 |
+
text_input = gr.Textbox(label="Your text", type="text", lines=5)
|
252 |
+
process_button = gr.Button("Process Text")
|
253 |
+
text_output = gr.HTML(label="Processed text")
|
254 |
+
process_button.click(text_processor.process, inputs=text_input, outputs=[text_output])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
255 |
|
256 |
if __name__ == "__main__":
|
257 |
demo.queue().launch()
|