Spaces:
Sleeping
Sleeping
File size: 5,615 Bytes
34564f3 49374c1 a882137 34564f3 a882137 2f5ca58 34564f3 ea1eb32 2f5ca58 4339cd0 2f5ca58 a882137 34564f3 a882137 34564f3 c693d2c 34564f3 c693d2c abe00c8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 |
#import os
#import openai
#import gradio as gr
#try:
# openai.api_key = os.environ["OPENAI_API_KEY"]
#except KeyError:
# error_message = "System is at capacity right now.Please try again later"
# print(error_message)
# def chatbot(input):
# return error_message
#else:
# messages = [
# {"role": "system", "content": "My AI Assistant"},
# ]
#def chatbot(input):
# try:
# if input:
# messages.append({"role": "user", "content": input})
# chat = openai.ChatCompletion.create(
# model="gpt-3.5-turbo", messages=messages
# )
# reply = chat.choices[0].message.content
# messages.append({"role": "assistant", "content": reply})
# return reply
# except openai.error.OpenAIError as e:
# return "System is at capacity right now.Please try again later"
#iface = gr.Interface(
# fn=chatbot,
# inputs=gr.inputs.Textbox(lines=7, label="Query"),
# outputs=gr.outputs.Textbox(label="Response"),
# theme=gr.themes.Default(primary_hue="slate"))
#iface.launch()
import os
import gradio as gr
import json
import requests
import openai
try:
openai.api_key = os.environ["OPENAI_API_KEY"]
except KeyError:
error_message = "System is at capacity right now.Please try again later"
print(error_message)
def chatbot(input):
return error_message
else:
messages = [
{"role": "system", "content": "My AI Assistant"},
]
#Streaming endpoint for OPENAI ChatGPT
API_URL = "https://api.openai.com/v1/chat/completions"
top_p_chatgpt = 1.0
temperature_chatgpt = 1.0
#Predict function for CHATGPT
def chatbot(inputs, chat_counter_chatgpt, chatbot_chatgpt=[], history=[]):
#Define payload and header for chatgpt API
payload = {
"model": "gpt-3.5-turbo",
"messages": [{"role": "user", "content": f"{inputs}"}],
"temperature" : 1.0,
"top_p":1.0,
"n" : 1,
"stream": True,
"presence_penalty":0,
"frequency_penalty":0,
}
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {openai.api_key}"
}
#Handling the different roles for ChatGPT
if chat_counter_chatgpt != 0 :
messages=[]
for data in chatbot_chatgpt:
temp1 = {}
temp1["role"] = "user"
temp1["content"] = data[0]
temp2 = {}
temp2["role"] = "assistant"
temp2["content"] = data[1]
messages.append(temp1)
messages.append(temp2)
temp3 = {}
temp3["role"] = "user"
temp3["content"] = inputs
messages.append(temp3)
payload = {
"model": "gpt-3.5-turbo",
"messages": messages, #[{"role": "user", "content": f"{inputs}"}],
"temperature" : temperature_chatgpt, #1.0,
"top_p": top_p_chatgpt, #1.0,
"n" : 1,
"stream": True,
"presence_penalty":0,
"frequency_penalty":0,
}
chat_counter_chatgpt+=1
history.append("You asked: "+ inputs)
# make a POST request to the API endpoint using the requests.post method, passing in stream=True
response = requests.post(API_URL, headers=headers, json=payload, stream=True)
token_counter = 0
partial_words = ""
counter=0
for chunk in response.iter_lines():
#Skipping the first chunk
if counter == 0:
counter+=1
continue
# check whether each line is non-empty
if chunk.decode() :
chunk = chunk.decode()
# decode each line as response data is in bytes
if len(chunk) > 13 and "content" in json.loads(chunk[6:])['choices'][0]["delta"]:
partial_words = partial_words + json.loads(chunk[6:])['choices'][0]["delta"]["content"]
if token_counter == 0:
history.append(" " + partial_words)
else:
history[-1] = partial_words
chat = [(history[i], history[i + 1]) for i in range(0, len(history) - 1, 2) ] # convert to tuples of list
token_counter+=1
yield chat, history, chat_counter_chatgpt # this resembles {chatbot: chat, state: history}
def reset_textbox():
return gr.update(value="")
def reset_chat(chatbot, state):
return None, []
with gr.Blocks(css="""#col_container {width: 1000px; margin-left: auto; margin-right: auto;}
#chatgpt {height: 700px; overflow: auto;}} """, theme=gr.themes.Default(primary_hue="slate") ) as demo:
with gr.Row():
with gr.Column(scale=14):
with gr.Box():
with gr.Row():
with gr.Column(scale=13):
inputs = gr.Textbox(label="Ask anything ⤵️ " )
with gr.Column(scale=1):
b1 = gr.Button('Submit', elem_id = 'submit').style(full_width=True)
b2 = gr.Button('Clear', elem_id = 'clear').style(full_width=True)
state_chatgpt = gr.State([])
with gr.Box():
with gr.Row():
chatbot_chatgpt = gr.Chatbot(elem_id="chatgpt", label='')
chat_counter_chatgpt = gr.Number(value=0, visible=False, precision=0)
inputs.submit(reset_textbox, [], [inputs])
b1.click( chatbot,
[ inputs, chat_counter_chatgpt, chatbot_chatgpt, state_chatgpt],
[chatbot_chatgpt, state_chatgpt],)
b2.click(reset_chat, [chatbot_chatgpt, state_chatgpt], [chatbot_chatgpt, state_chatgpt])
demo.queue(concurrency_count=16).launch(height= 2500, debug=True)
|