File size: 19,119 Bytes
96ee597
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
"""Conformer definition adjusted given the Lucidrain's repo.
https://github.com/lucidrains/soundstorm-pytorch/blob/main/soundstorm_pytorch/soundstorm.py  # noqa

Copyright PolyAI Limited.
"""
from collections import namedtuple
from functools import wraps
from typing import Dict, Union

import torch
import torch.nn.functional as F
from einops import rearrange, reduce
from einops.layers.torch import EinMix, Rearrange
from torch import einsum, nn


# rotary embedding
class RotaryEmbedding(nn.Module):
    def __init__(self, dim, theta = 10000):
        super().__init__()
        inv_freq = 1.0 / (theta ** (torch.arange(0, dim, 2).float() / dim))
        self.register_buffer("inv_freq", inv_freq, persistent = False)

    @property
    def device(self):
        return next(self.buffers()).device

    def forward(self, seq_len):
        t = torch.arange(seq_len, device = self.device).type_as(self.inv_freq)
        freqs = torch.einsum('i , j -> i j', t, self.inv_freq)
        freqs = torch.cat((freqs, freqs), dim = -1)
        return freqs

def rotate_half(x):
    x1, x2 = x.chunk(2, dim=-1)
    return torch.cat((-x2, x1), dim=-1)

def apply_rotary_pos_emb(pos, t):
    return (t * pos.cos()) + (rotate_half(t) * pos.sin())


# constants
EfficientAttentionConfig = namedtuple(
    'EfficientAttentionConfig', 
    ['enable_flash', 'enable_math', 'enable_mem_efficient']
)

# helpers
def exists(val):
    return val is not None

def default(val, d):
    return val if exists(val) else d

def divisible_by(numer, denom):
    return (numer % denom) == 0

def calc_same_padding(kernel_size):
    pad = kernel_size // 2
    return (pad, pad - (kernel_size + 1) % 2)

def eval_decorator(fn):
    @wraps(fn)
    def inner(model, *args, **kwargs):
        was_training = model.training
        model.eval()
        out = fn(model, *args, **kwargs)
        model.train(was_training)
        return out
    return inner


def once(fn):
    called = False
    @wraps(fn)
    def inner(x):
        nonlocal called
        if called:
            return
        called = True
        return fn(x)
    return inner

print_once = once(print)


# t5 relative positional bias
class T5RelativePositionBias(nn.Module):
    def __init__(
        self,
        scale = 1.,
        num_buckets = 32,
        max_distance = 128,
        heads = 8
    ):
        super().__init__()
        self.scale = scale
        self.num_buckets = num_buckets
        self.max_distance = max_distance
        self.relative_attention_bias = nn.Embedding(num_buckets, heads)

    @staticmethod
    def _relative_position_bucket(
        relative_position,
        num_buckets = 32,
        max_distance = 128
    ):
        ret = 0
        n = -relative_position

        num_buckets //= 2
        ret += (n < 0).long() * num_buckets
        n = torch.abs(n)

        max_exact = num_buckets // 2
        is_small = n < max_exact

        val_if_large = max_exact + (
            torch.log(n.float() / max_exact) / math.log(
                max_distance / max_exact) * (num_buckets - max_exact)
        ).long()

        val_if_large = torch.min(
            val_if_large,
            torch.full_like(val_if_large, num_buckets - 1)
        )

        ret += torch.where(is_small, n, val_if_large)
        return ret

    @property
    def device(self):
        return next(self.parameters()).device

    def forward(self, n):
        pos = torch.arange(n, device = self.device).long()
        rel_pos = rearrange(pos, 'j -> 1 j') - rearrange(pos, 'i -> i 1')

        rp_bucket = self._relative_position_bucket(
            rel_pos, num_buckets = self.num_buckets, 
            max_distance = self.max_distance)
        values = self.relative_attention_bias(rp_bucket)

        bias = rearrange(values, 'i j h -> h i j')
        return bias * self.scale


# main class
class Attend(nn.Module):
    def __init__(
        self,
        causal = False,
        dropout = 0.,
        flash = False
    ):
        super().__init__()
        self.dropout = dropout
        self.attn_dropout = nn.Dropout(dropout)

        self.causal = causal
        self.flash = flash

        # determine efficient attention configs for cuda and cpu
        self.cpu_config = EfficientAttentionConfig(True, True, True)
        self.cuda_config = None

        if not torch.cuda.is_available() or not flash:
            return

        device_properties = torch.cuda.get_device_properties(torch.device('cuda'))

        if device_properties.major == 8 and device_properties.minor == 0:
            print_once('A100 GPU detected, using flash attention if input tensor is on cuda')  # noqa
            self.cuda_config = EfficientAttentionConfig(True, True, True)
        else:
            print_once('Non-A100 GPU detected, using math or mem efficient attention if input tensor is on cuda')  # noqa
            self.cuda_config = EfficientAttentionConfig(False, True, True)

    def get_mask(self, i, j, device):
        return torch.ones((i, j), device=device, dtype=torch.bool).triu(j - i + 1)  # noqa

    def flash_attn(self, q, k, v, mask = None, attn_bias = None):
        _, heads, q_len, _, k_len, is_cuda, device = *q.shape, k.shape[-2], q.is_cuda, q.device  # noqa

        # single headed key / values

        if k.ndim == 3:
            k = rearrange(k, 'b n d -> b 1 n d')

        if v.ndim == 3:
            v = rearrange(v, 'b n d -> b 1 n d')

        # Check if mask exists and expand to compatible shape
        # The mask is B L, so it would have to be expanded to B H N L
        if exists(mask) and mask.ndim != 4:
            mask = rearrange(mask, 'b j -> b 1 1 j')
            mask = mask.expand(-1, heads, q_len, -1)

        # Check if there is a compatible device for flash attention
        config = self.cuda_config if is_cuda else self.cpu_config
        causal = self.causal

        # handle attention bias
        if exists(attn_bias):
            mask_value = -torch.finfo(q.dtype).max // 2
            causal_mask = self.get_mask(q_len, k_len, device)
            attn_bias = attn_bias.masked_fill(causal_mask, mask_value)

            if exists(mask):
                attn_bias = attn_bias.masked_fill(~mask, mask_value)

            mask = attn_bias
            causal = False

        # pytorch 2.0 flash attn: q, k, v, mask, dropout, causal, softmax_scale
        with torch.backends.cuda.sdp_kernel(**config._asdict()):
            out = F.scaled_dot_product_attention(
                q, k, v,
                attn_mask = mask,
                dropout_p = self.dropout if self.training else 0., 
                is_causal = causal
            )

        return out

    def forward(self, q, k, v, mask = None, attn_bias = None):
        """
        einstein notation
        b - batch
        h - heads
        n, i, j - sequence length (base sequence length, source, target)
        d - feature dimension
        """

        q_len, k_len, device = q.shape[-2], k.shape[-2], q.device

        scale = q.shape[-1] ** -0.5

        kv_einsum_eq = 'b j d' if k.ndim == 3 else 'b h j d'

        if self.flash:
            assert not exists(attn_bias)
            return self.flash_attn(q, k, v, mask = mask)

        # similarity

        sim = einsum(f"b h i d, {kv_einsum_eq} -> b h i j", q, k) * scale

        # attention bias

        if exists(attn_bias):
            sim = sim + attn_bias

        # causal mask
        if self.causal:
            causal_mask = self.get_mask(q_len, k_len, device)
            sim = sim.masked_fill(causal_mask, -torch.finfo(sim.dtype).max)

        # key padding mask
        if exists(mask):
            if mask.ndim != 4:
                mask = rearrange(mask, 'b j -> b 1 1 j')
            sim = sim.masked_fill(~mask, -torch.finfo(sim.dtype).max)

        # attention
        attn = sim.softmax(dim=-1)
        attn = self.attn_dropout(attn)

        # aggregate values
        out = einsum(f"b h i j, {kv_einsum_eq} -> b h i d", attn, v)

        return out


class Swish(nn.Module):
    def forward(self, x):
        return x * x.sigmoid()


class GLU(nn.Module):
    def __init__(self, dim):
        super().__init__()
        self.dim = dim

    def forward(self, x):
        out, gate = x.chunk(2, dim=self.dim)
        return out * gate.sigmoid()


class DepthWiseConv1d(nn.Module):
    def __init__(self, chan_in, chan_out, kernel_size, padding):
        super().__init__()
        self.padding = padding
        self.conv = nn.Conv1d(chan_in, chan_out, kernel_size, groups = chan_in)

    def forward(self, x):
        x = F.pad(x, self.padding)
        return self.conv(x)


class Scale(nn.Module):
    def __init__(self, scale, fn):
        super().__init__()
        self.fn = fn
        self.scale = scale

    def forward(self, x, **kwargs):
        return self.fn(x, **kwargs) * self.scale


class ChanLayerNorm(nn.Module):
    def __init__(self, dim):
        super().__init__()
        self.gamma = nn.Parameter(torch.ones(1, dim, 1))

    def forward(self, x):
        eps = 1e-6 if x.dtype == torch.float32 else 1e-4
        var = torch.var(x, dim = 1, unbiased = False, keepdim = True)
        mean = torch.mean(x, dim = 1, keepdim = True)
        return (x - mean) * var.clamp(min = eps).rsqrt() * self.gamma


class PreNorm(nn.Module):
    def __init__(self, dim, fn):
        super().__init__()
        self.fn = fn
        self.norm = nn.LayerNorm(dim)

    def forward(self, x, **kwargs):
        x = self.norm(x)
        return self.fn(x, **kwargs)


class Attention(nn.Module):
    def __init__(
        self,
        dim,
        heads = 8,
        dim_head = 64,
        dropout = 0.,
        flash = True
    ):
        super().__init__()
        inner_dim = dim_head * heads
        self.heads= heads
        self.scale = dim_head ** -0.5

        self.attend = Attend(
            flash = flash,
            dropout = dropout
        )

        self.dropout = nn.Dropout(dropout)

        self.to_q = nn.Linear(dim, inner_dim, bias = False)
        self.to_kv = nn.Linear(dim, inner_dim * 2, bias = False)
        self.to_out = nn.Linear(inner_dim, dim)

    def forward(
        self,
        x,
        context = None,
        mask = None,
        rotary_emb = None,
        attn_bias = None
    ):
        n, device, h, has_context = x.shape[-2], x.device, self.heads, exists(context)
        context = default(context, x)

        q, k, v = (self.to_q(x), *self.to_kv(context).chunk(2, dim = -1))
        q, k, v = map(
            lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), (q, k, v))

        if exists(rotary_emb):
            q = apply_rotary_pos_emb(rotary_emb, q)
            k = apply_rotary_pos_emb(rotary_emb, k)

        out = self.attend(q, k, v, mask = mask, attn_bias = attn_bias)

        out = rearrange(out, 'b h n d -> b n (h d)')
        return self.to_out(out)


class FeedForward(nn.Module):
    def __init__(
        self,
        dim,
        mult = 4,
        dropout = 0.
    ):
        super().__init__()
        self.net = nn.Sequential(
            nn.Linear(dim, dim * mult),
            Swish(),
            nn.Dropout(dropout),
            nn.Linear(dim * mult, dim),
            nn.Dropout(dropout)
        )

    def forward(self, x):
        return self.net(x)


class ConformerConvModule(nn.Module):
    def __init__(
        self,
        dim,
        causal = False,
        expansion_factor = 2,
        kernel_size = 31,
        dropout = 0.
    ):
        super().__init__()

        inner_dim = dim * expansion_factor
        padding = calc_same_padding(kernel_size) if not causal else (kernel_size - 1, 0)

        self.net = nn.Sequential(
            nn.LayerNorm(dim),
            Rearrange('b n c -> b c n'),
            nn.Conv1d(dim, inner_dim * 2, 1),
            GLU(dim=1),
            DepthWiseConv1d(
                inner_dim, inner_dim, kernel_size = kernel_size, 
                padding = padding
            ),
            Swish(),
            ChanLayerNorm(inner_dim),
            nn.Conv1d(inner_dim, dim, 1),
            Rearrange('b c n -> b n c'),
            nn.Dropout(dropout)
        )

    def forward(self, x):
        return self.net(x)


# Conformer Block
class ConformerBlock(nn.Module):
    def __init__(
        self,
        *,
        dim,
        dim_head = 64,
        heads = 8,
        ff_mult = 4,
        conv_expansion_factor = 2,
        conv_kernel_size = 31,
        attn_dropout = 0.,
        attn_flash = True,
        ff_dropout = 0.,
        conv_dropout = 0.,
        conv_causal = False
    ):
        super().__init__()
        self.ff1 = FeedForward(dim = dim, mult = ff_mult, dropout = ff_dropout)
        self.attn = Attention(
            dim = dim, dim_head = dim_head, heads = heads, 
            dropout = attn_dropout, flash = attn_flash
        )
        self.conv = ConformerConvModule(
            dim = dim, causal = conv_causal, 
            expansion_factor = conv_expansion_factor, 
            kernel_size = conv_kernel_size, dropout = conv_dropout
        )
        self.ff2 = FeedForward(dim = dim, mult = ff_mult, dropout = ff_dropout)

        self.attn = PreNorm(dim, self.attn)
        self.ff1 = Scale(0.5, PreNorm(dim, self.ff1))
        self.ff2 = Scale(0.5, PreNorm(dim, self.ff2))

        self.post_norm = nn.LayerNorm(dim)

    def forward(
        self,
        x,
        mask = None,
        rotary_emb = None,
        attn_bias = None
    ):
        x = self.ff1(x) + x
        x = self.attn(x, mask = mask, rotary_emb = rotary_emb, attn_bias = attn_bias) + x  # noqa
        x = self.conv(x) + x
        x = self.ff2(x) + x
        x = self.post_norm(x)
        return x


# Conformer
class Conformer(nn.Module):
    def __init__(
        self,
        dim,
        *,
        num_layers,
        dim_head = 64,
        heads = 8,
        ff_mult = 4,
        conv_expansion_factor = 2,
        conv_kernel_size = 31,
        attn_dropout = 0.,
        ff_dropout = 0.,
        conv_dropout = 0.,
        conv_causal = False,
        attn_flash = True,
        t5_rel_pos_bias = False
    ):
        super().__init__()

        assert not (t5_rel_pos_bias and attn_flash), 'flash attention is not compatible with learned bias'  # noqa

        self.dim = dim
        self.layers = nn.ModuleList([])

        self.rotary_emb = RotaryEmbedding(
            dim_head) if not t5_rel_pos_bias else None
        self.rel_pos_bias = T5RelativePositionBias(
            dim_head ** 0.5, heads = heads) if t5_rel_pos_bias else None

        for _ in range(num_layers):
            self.layers.append(ConformerBlock(
                dim = dim,
                dim_head = dim_head,
                heads = heads,
                ff_mult = ff_mult,
                conv_expansion_factor = conv_expansion_factor,
                conv_kernel_size = conv_kernel_size,
                attn_dropout = attn_dropout,
                ff_dropout = ff_dropout,
                conv_dropout = conv_dropout,
                conv_causal = conv_causal,
                attn_flash = attn_flash
            ))

    def forward(self, x, mask = None):
        seq_len = x.shape[-2]

        rotary_emb = self.rotary_emb(seq_len) if exists(self.rotary_emb) else None  # noqa
        attn_bias = self.rel_pos_bias(seq_len) if exists(self.rel_pos_bias) else None  #noqa

        for block in self.layers:
            x = block(
                x,
                mask = mask,
                rotary_emb = rotary_emb,
                attn_bias = attn_bias
            )
        return x


# conformer with sum reduction across quantized tokens at the beginning, 
# along with heads
class ConformerWrapper(nn.Module):
    def __init__(
        self,
        *,
        codebook_size,
        num_quantizers,
        conformer: Union[Conformer, Dict[str, any]],
        grouped_quantizers = 1
    ):
        super().__init__()
        self.conformer = conformer

        if isinstance(conformer, dict):
            self.conformer = Conformer(**self.conformer)

        dim = self.conformer.dim

        self.embedding_proj = nn.Sequential(
            nn.Linear(dim * grouped_quantizers, dim),
            nn.LayerNorm(dim)
        ) if grouped_quantizers > 1 else nn.Identity()

        num_codes_with_mask = codebook_size + 1
        num_effective_quantizers = num_quantizers * grouped_quantizers

        self.code_embeds = nn.Embedding(
            num_codes_with_mask * num_effective_quantizers, dim)

        self.register_buffer(
            'quantizer_offsets', 
            torch.arange(num_effective_quantizers) * num_codes_with_mask, 
            persistent = False
        )
        self.register_buffer(
            'mask_tokens', self.quantizer_offsets + num_codes_with_mask, 
            persistent = False
        )

        self.dim = dim
        self.codebook_size = codebook_size

        self.num_codes_with_mask = num_codes_with_mask
        self.num_quantizers = num_quantizers
        self.grouped_quantizers = grouped_quantizers

        self.heads = nn.Sequential(
            nn.Linear(dim, dim * num_effective_quantizers),
            Rearrange('b n (h d) -> b (n h) d', h = num_effective_quantizers)
        )

        # each quantizer codebook would require its own logits weight 
        # and bias matrices
        # the amazing einops makes this easy with 'EinMix'
        self.to_logits = nn.Sequential(
            nn.LayerNorm(dim),
            Rearrange('b (n gq) d -> b n gq d', gq = num_effective_quantizers),
            EinMix(
                'b n gq d -> b n gq l',
                weight_shape = 'gq d l',
                bias_shape = 'gq l',
                gq = num_effective_quantizers,
                l = codebook_size,
                d = dim
            ),
            Rearrange('b ... d -> b (...) d')
        )

    def forward(
        self,
        x,
        *,
        mask = None,
        cond = None,
        sum_embeds = None,
        return_embeddings = False,
        return_logits_and_embeddings = False
    ):
        """
        einops notation:
        b - batch
        n - sequence
        g - groups
        q - quantizers
        d - feature dimension
        """

        n, q, g = x.shape[-1], self.num_quantizers, self.grouped_quantizers
        assert divisible_by(n, g * q), 'sequence must be divisible by number of quantizers'  # noqa

        x = rearrange(x, 'b (n gq) -> b n gq', gq = g * q)
        x = x + self.quantizer_offsets

        x = self.code_embeds(x)

        x = reduce(x, 'b n (g q) d -> b n (g d)', 'sum', g = g)

        x = self.embedding_proj(x)

        if exists(sum_embeds):
            x = x + sum_embeds

        if exists(cond):
            if cond.ndim == 2:
                cond = rearrange(cond, 'b d -> b 1 d')

            x = x + cond

        x = self.conformer(x, mask = mask)
        embeds = self.heads(x)

        if return_embeddings or not exists(self.to_logits):
            return embeds

        logits = self.to_logits(embeds)

        if return_logits_and_embeddings:
            return logits, embeds

        return logits