Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,41 +1,49 @@
|
|
1 |
-
from
|
2 |
-
from
|
|
|
|
|
|
|
3 |
|
4 |
-
app =
|
5 |
|
6 |
-
#
|
7 |
-
|
|
|
|
|
8 |
|
9 |
-
|
10 |
-
|
11 |
-
"wants_meeting": "Клиент хочет назначить встречу или обсудить время",
|
12 |
-
"not_interested": "Клиент не заинтересован во встрече или у него нет времени",
|
13 |
-
"asking_questions": "Клиент задает уточняющие вопросы по теме"
|
14 |
-
}
|
15 |
-
|
16 |
-
@app.route("/analyze", methods=["POST"])
|
17 |
-
def analyze():
|
18 |
-
data = request.get_json()
|
19 |
-
emails = data.get("emails", [])
|
20 |
|
21 |
-
|
22 |
-
|
|
|
23 |
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
# Вывод в формате {label: score}
|
30 |
-
result = {
|
31 |
-
"text": email,
|
32 |
-
"intents": {
|
33 |
-
key: round(scored_labels[label], 4) for key, label in LABELS.items()
|
34 |
-
}
|
35 |
-
}
|
36 |
-
results.append(result)
|
37 |
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
if __name__ == "__main__":
|
41 |
-
|
|
|
|
1 |
+
from fastapi import FastAPI, HTTPException
|
2 |
+
from pydantic import BaseModel
|
3 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
4 |
+
import torch
|
5 |
+
import numpy as np
|
6 |
|
7 |
+
app = FastAPI()
|
8 |
|
9 |
+
# Load model and tokenizer
|
10 |
+
MODEL_NAME = "xlm-roberta-base"
|
11 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
12 |
+
model = AutoModelForSequenceClassification.from_pretrained(MODEL_NAME, num_labels=3)
|
13 |
|
14 |
+
class EmailRequest(BaseModel):
|
15 |
+
text: str
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
+
class EmailResponse(BaseModel):
|
18 |
+
category: int
|
19 |
+
confidence: float
|
20 |
|
21 |
+
LABELS = {
|
22 |
+
0: "Клиент хочет назначить встречу",
|
23 |
+
1: "Клиент не заинтересован / нет времени / отказывается",
|
24 |
+
2: "Клиент задаёт уточняющие вопросы"
|
25 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
+
@app.post("/classify", response_model=EmailResponse)
|
28 |
+
async def classify_email(request: EmailRequest):
|
29 |
+
try:
|
30 |
+
# Tokenize the input text
|
31 |
+
inputs = tokenizer(request.text, return_tensors="pt", truncation=True, max_length=512)
|
32 |
+
|
33 |
+
# Get model predictions
|
34 |
+
with torch.no_grad():
|
35 |
+
outputs = model(**inputs)
|
36 |
+
predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
37 |
+
|
38 |
+
# Get the predicted class and confidence
|
39 |
+
predicted_class = torch.argmax(predictions).item()
|
40 |
+
confidence = predictions[0][predicted_class].item()
|
41 |
+
|
42 |
+
return EmailResponse(category=predicted_class + 1, confidence=confidence)
|
43 |
+
|
44 |
+
except Exception as e:
|
45 |
+
raise HTTPException(status_code=500, detail=str(e))
|
46 |
|
47 |
if __name__ == "__main__":
|
48 |
+
import uvicorn
|
49 |
+
uvicorn.run(app, host="0.0.0.0", port=8000)
|