Spaces:
Sleeping
Sleeping
File size: 11,412 Bytes
8c730df |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"from transformers import GPT2LMHeadModel, GPT2Tokenizer\n",
"import torch\n",
"DEVICE = torch.device(\"cuda:0\")\n",
"\n",
"model_name_or_path = \"sberbank-ai/rugpt3small_based_on_gpt2\"\n",
"tokenizer = GPT2Tokenizer.from_pretrained(model_name_or_path)\n",
"model = GPT2LMHeadModel.from_pretrained(model_name_or_path).to(DEVICE)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"with open('anekdoty.txt', 'r', encoding='utf-8') as file:\n",
" text = file.read()"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/polyakovk/venv_linux/lib/python3.11/site-packages/transformers/data/datasets/language_modeling.py:53: FutureWarning: This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets library. You can have a look at this example script for pointers: https://github.com/huggingface/transformers/blob/main/examples/pytorch/language-modeling/run_mlm.py\n",
" warnings.warn(\n"
]
}
],
"source": [
"from transformers import TextDataset, DataCollatorForLanguageModeling\n",
"\n",
"# Сохраним обучающие данные в .txt файл \n",
"train_path = 'train_dataset.txt'\n",
"with open(train_path, \"w\") as f:\n",
" f.write(text)\n",
"\n",
"# Создание датасета\n",
"train_dataset = TextDataset(tokenizer=tokenizer,file_path=train_path,block_size=32)\n",
" \n",
"# Создание даталодера (нарезает текст на оптимальные по длине куски)\n",
"data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"from transformers import Trainer, TrainingArguments\n",
"\n",
"training_args = TrainingArguments(\n",
" output_dir=\"./finetuned\",\n",
" overwrite_output_dir=True,\n",
" num_train_epochs=30,\n",
" per_device_train_batch_size=32,\n",
" per_device_eval_batch_size=16,\n",
" warmup_steps=10,\n",
" gradient_accumulation_steps=32,\n",
" )\n",
"\n",
"trainer = Trainer(\n",
" model=model,\n",
" args=training_args,\n",
" data_collator=data_collator,\n",
" train_dataset=train_dataset,\n",
" optimizers = (torch.optim.AdamW(model.parameters(),lr=0.001),None)\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
" <div>\n",
" \n",
" <progress value='240' max='240' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
" [240/240 1:14:57, Epoch 27/30]\n",
" </div>\n",
" <table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: left;\">\n",
" <th>Step</th>\n",
" <th>Training Loss</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" </tbody>\n",
"</table><p>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": [
"TrainOutput(global_step=240, training_loss=0.9343911488850911, metrics={'train_runtime': 4515.8084, 'train_samples_per_second': 58.428, 'train_steps_per_second': 0.053, 'total_flos': 4011240960000000.0, 'train_loss': 0.9343911488850911, 'epoch': 27.927272727272726})"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"trainer.train()"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [],
"source": [
"model_path = \"finetuned\"\n",
"tokenizer = GPT2Tokenizer.from_pretrained(model_path)\n",
"model = GPT2LMHeadModel.from_pretrained(model_path).to(DEVICE)"
]
},
{
"cell_type": "code",
"execution_count": 70,
"metadata": {},
"outputs": [],
"source": [
"def generate_jokes(prompt, temperature, top_p, max_length, num_return_sequences):\n",
" input_ids = tokenizer.encode(prompt, return_tensors='pt').to(DEVICE)\n",
" \n",
" # Генерируем несколько шуток\n",
" outputs = model.generate(\n",
" input_ids=input_ids,\n",
" do_sample=True,\n",
" # num_beams=5,\n",
" temperature=temperature,\n",
" top_p=top_p,\n",
" max_length=max_length,\n",
" num_return_sequences=num_return_sequences\n",
" )\n",
" \n",
" # Обработка всех сгенерированных шуток\n",
" jokes = []\n",
" for output in outputs:\n",
" generated_text = tokenizer.decode(output, skip_special_tokens=True)\n",
" # Обрезаем текст после первой точки\n",
" if '…' in generated_text:\n",
" generated_text = generated_text.split('…')[0] + '.'\n",
" elif '.' in generated_text:\n",
" generated_text = generated_text.split('.')[0] + '.'\n",
" elif '!' in generated_text:\n",
" generated_text = generated_text.split('!')[0] + '.'\n",
" jokes.append(generated_text)\n",
" \n",
" return jokes"
]
},
{
"cell_type": "code",
"execution_count": 73,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"['Шла Саша по шоссе, громко разговаривая с шофером.', 'Шла Саша по шоссе, громко матерясь и упирая руку в ширинку.', 'Шла Саша по шоссе, несла пургу и, как раз, дождь.', 'Шла Саша по шоссе, но не за трактором.']\n"
]
}
],
"source": [
"text = \"Шла Саша по шоссе\"\n",
"print(generate_jokes(text, 1, 0.9, 30, 4))"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"однажды я проваливал экзамен по истории.\n",
"— Вино с возрастом становится лучше. Я становлюсь лучше с вином…\n",
"— Сними\n"
]
}
],
"source": [
"text = \"однажды я пришел из школы\"\n",
"input_ids = tokenizer.encode(text, return_tensors=\"pt\").to(DEVICE)\n",
"model.eval()\n",
"with torch.no_grad():\n",
" out = model.generate(input_ids, \n",
" do_sample=True,\n",
" num_beams=2,\n",
" temperature=1.5,\n",
" top_p=0.9,\n",
" max_length=30,\n",
" \n",
" )\n",
"\n",
"generated_text = list(map(tokenizer.decode, out))[0]\n",
"print()\n",
"print(generated_text)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"# model.save_pretrained('./finetuned')\n",
"# tokenizer.save_pretrained('./finetuned')"
]
},
{
"cell_type": "code",
"execution_count": 38,
"metadata": {},
"outputs": [],
"source": [
"# import requests\n",
"# from bs4 import BeautifulSoup\n",
"# import re\n",
"\n",
"# # Функция для получения шуток с одной страницы\n",
"# def get_jokes_from_page(url):\n",
"# response = requests.get(url, headers=headers)\n",
"# response.raise_for_status() # Проверка на ошибки запроса\n",
"\n",
"# soup = BeautifulSoup(response.text, 'html.parser')\n",
"\n",
"# # Находим все анекдоты на странице\n",
"# jokes = soup.find_all('div', class_='anekdot-text') # Замените селектор на правильный\n",
"\n",
"# page_jokes = []\n",
"# for joke in jokes:\n",
"# # Извлекаем текст анекдота\n",
"# joke_text = joke.get_text(strip=True)\n",
" \n",
"# # Удаляем цифры и символы в конце текста\n",
"# joke_text_cleaned = re.sub(r'\\d+[\\#\\d]*$', '', joke_text).strip()\n",
" \n",
"# # Добавляем очищенный текст в список\n",
"# page_jokes.append(joke_text_cleaned)\n",
" \n",
"# return page_jokes\n",
"\n",
"# # URL-шаблон для страниц\n",
"# base_url = \"https://anekdotovstreet.com/korotkie-anekdoty/{}/\"\n",
"\n",
"# # Заголовки для имитации браузера\n",
"# headers = {\n",
"# 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36'\n",
"# }\n",
"\n",
"# # Открываем файл для записи анекдотов\n",
"# with open('anekdoty.txt', 'w', encoding='utf-8') as file:\n",
"# for page_number in range(2, 400):\n",
"# # Формируем URL для текущей страницы\n",
"# url = base_url.format(page_number)\n",
"# print(f\"Собираю шутки со страницы {page_number}...\")\n",
"\n",
"# # Получаем шутки с текущей страницы\n",
"# jokes = get_jokes_from_page(url)\n",
" \n",
"# # Если шуток нет, значит, страницы закончились (опционально)\n",
"# if not jokes:\n",
"# print(f\"Шутки на странице {page_number} не найдены.\")\n",
"# continue\n",
" \n",
"# # Записываем шутки в файл\n",
"# for joke in jokes:\n",
"# file.write(joke + '\\n')\n",
"\n",
"# print(\"Анекдоты успешно сохранены в файл 'anekdoty.txt'.\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "venv_linux",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.9"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|