Spaces:
Sleeping
Sleeping
# from transformers import pipeline | |
# generator = pipeline("text-generation", model="gpt2") | |
# def generate_blog(topic): | |
# return generator(f"Write a blog on: {topic}", max_length=200)[0]["generated_text"] | |
# from transformers import pipeline | |
# import gradio as gr | |
# # Load the model | |
# generator = pipeline("text-generation", model="mistralai/Mistral-7B-Instruct-v0.1") | |
# # Define your function | |
# def generate_text(prompt): | |
# result = generator(prompt, max_length=100, num_return_sequences=1, do_sample=True, | |
# temperature=0.7, | |
# top_p=0.9,) | |
# return result[0]["generated_text"] | |
# # Create Gradio interface | |
# iface = gr.Interface(fn=generate_text, inputs="text", outputs="text", title="Text Generator with GPT-2") | |
# # β This line is required to actually launch the app on Hugging Face Spaces | |
# iface.launch() | |
from transformers import pipeline | |
import gradio as gr | |
generator = pipeline("text-generation", model="sshleifer/tiny-gpt2") | |
def clean_topic(topic): | |
topic = topic.lower() | |
if "write a blog on" in topic: | |
topic = topic.replace("write a blog on", "").strip() | |
elif "write a blog about" in topic: | |
topic = topic.replace("write a blog about", "").strip() | |
return topic.capitalize() | |
# def generate_blog(topic): | |
# topic = clean_topic(topic) | |
# if not topic: | |
# return "Please provide a topic." | |
# prompt = f""" | |
# Write a detailed and engaging blog post about "{topic}". | |
# Include an introduction, 2β3 subheadings with paragraphs, and a conclusion. | |
# Make it informative and conversational. | |
# """ | |
# result = generator(prompt, max_length=700, do_sample=True, temperature=0.7, top_p=0.9) | |
# return result[0]['generated_text'] | |
def generate_blog(topic): | |
prompt = f""" | |
Write a detailed and engaging blog post about "{topic}". | |
Include an introduction, 2β3 subheadings with paragraphs, and a conclusion. | |
Make it informative and conversational. | |
""" | |
result = generator(prompt, max_length=700, do_sample=True, temperature=0.7, top_p=0.9) | |
return result[0]['generated_text'] | |
gr.Interface(fn=generate_blog, inputs="text", outputs="text", title="AI Blog Writer").launch() | |