Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
def launch_interface():
|
2 |
with gr.Blocks(
|
3 |
title="RAG App",
|
@@ -68,3 +132,7 @@ def launch_interface():
|
|
68 |
clear_ins.click(lambda: ("", "", ""), outputs=[dropdown_ins, textbox_ins, output_ins])
|
69 |
|
70 |
demo.launch()
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import os
|
3 |
+
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, Settings
|
4 |
+
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
5 |
+
|
6 |
+
|
7 |
+
# β
Access OpenAI API Key
|
8 |
+
openai_api_key = os.environ.get("OPENAI_API_KEY")
|
9 |
+
if not openai_api_key:
|
10 |
+
raise ValueError("β OPENAI_API_KEY not found. Add it in Space settings > Secrets.")
|
11 |
+
os.environ["OPENAI_API_KEY"] = openai_api_key
|
12 |
+
|
13 |
+
# β
Set Hugging Face Embedding globally via Settings
|
14 |
+
embed_model = HuggingFaceEmbedding(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
15 |
+
Settings.embed_model = embed_model # Replaces deprecated ServiceContext
|
16 |
+
|
17 |
+
# β
Helper to load and filter documents
|
18 |
+
def load_filtered_docs(folder):
|
19 |
+
docs = SimpleDirectoryReader(folder).load_data()
|
20 |
+
return [doc for doc in docs if doc.text and doc.text.strip()]
|
21 |
+
|
22 |
+
# β
Load Paul Graham documents
|
23 |
+
pg_docs = load_filtered_docs("data/paul")
|
24 |
+
pg_index = VectorStoreIndex.from_documents(pg_docs)
|
25 |
+
pg_engine = pg_index.as_query_engine()
|
26 |
+
|
27 |
+
# β
Load Insurance documents
|
28 |
+
ins_docs = load_filtered_docs("data/insurance")
|
29 |
+
ins_index = VectorStoreIndex.from_documents(ins_docs)
|
30 |
+
ins_engine = ins_index.as_query_engine()
|
31 |
+
|
32 |
+
# β
Query functions
|
33 |
+
def query_pg(query):
|
34 |
+
if not query.strip():
|
35 |
+
return "β Please enter a valid question before submitting."
|
36 |
+
try:
|
37 |
+
return str(pg_engine.query(query))
|
38 |
+
except Exception as e:
|
39 |
+
return f"β Error: {str(e)}"
|
40 |
+
|
41 |
+
def query_ins(query):
|
42 |
+
if not query.strip():
|
43 |
+
return "β Please enter a valid question before submitting."
|
44 |
+
try:
|
45 |
+
return str(ins_engine.query(query))
|
46 |
+
except Exception as e:
|
47 |
+
return f"β Error: {str(e)}"
|
48 |
+
|
49 |
+
# β
Predefined questions
|
50 |
+
paul_questions = [
|
51 |
+
"What is the main purpose of writing, according to Paul Graham?",
|
52 |
+
"Why do students often struggle with writing in school?",
|
53 |
+
"How does Paul Graham describe the relationship between writing and thinking?",
|
54 |
+
"What is one reason Paul Graham gives for why school essays feel boring?",
|
55 |
+
"What does Paul Graham suggest writers should focus on first?"
|
56 |
+
]
|
57 |
+
|
58 |
+
insurance_questions = [
|
59 |
+
"What is insurance and why is it important?",
|
60 |
+
"What types of insurance are common?",
|
61 |
+
"How does life insurance work?",
|
62 |
+
"What is the difference between premium and coverage?",
|
63 |
+
"What should you check before buying insurance?"
|
64 |
+
]
|
65 |
def launch_interface():
|
66 |
with gr.Blocks(
|
67 |
title="RAG App",
|
|
|
132 |
clear_ins.click(lambda: ("", "", ""), outputs=[dropdown_ins, textbox_ins, output_ins])
|
133 |
|
134 |
demo.launch()
|
135 |
+
|
136 |
+
|
137 |
+
if __name__ == "__main__":
|
138 |
+
launch_interface()
|