File size: 2,822 Bytes
b947dc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
from langchain_community.vectorstores import FAISS
from config import embeddings, llm, llm2
from pprint import pprint
from langchain.retrievers.document_compressors import FlashrankRerank
from langchain.retrievers import ContextualCompressionRetriever
from langchain_core.prompts import ChatPromptTemplate

compressor = FlashrankRerank()

def get_vectoreDB(file_path:str):
    
    path = f"vectors/{file_path}".replace(".pdf","").replace("data/","")
    vectoreStore = FAISS.load_local(
                            path,
                            embeddings,
                            allow_dangerous_deserialization=True
                        )
        
    vectoreStore_as_retriever = vectoreStore.as_retriever(
                                    search_type="similarity",
                                    search_kwargs={
                                        "k": 10,
                                        "include_metadata": True
                                    }
                                )
    
    #ReRanker
    compression_retriever = ContextualCompressionRetriever(
        base_compressor=compressor,
        base_retriever=vectoreStore_as_retriever
        )
            
    return compression_retriever


system_prompt = """

You are a Medical Chatbot named as Medi. Your task is to assist as a doctor.



Your tasks are given below:

- Answer the given question from the given context. If the question is out of context from medical feild, just tell the user "I don't know about it".

- If the question is related to medical field and not relevent to context, then generate by your own self 

- If the question is about the context given, explain the user according to the most relevent context.

- Explain the user a proper short Answer, don't copy the whole context, explain it by your self.

- If someone ask your name, so tell them



Remember to answer in a precise way and to the point as a doctor.



query: '''{query}'''

"""

PROMPT = ChatPromptTemplate.from_messages(
    [
        ("system", system_prompt),
        ("human", "context: '''{context}'''")
    ]
)

llm_chain = PROMPT | llm
mini_llm_chain = PROMPT | llm2

vectoreDB = get_vectoreDB("data/The_GALE_ENCYCLOPEDIA_of_MEDICINE_SECOND.pdf")

def ask_ai(query:str, model_name:str):
    docs  = vectoreDB.invoke(query)
    context_text = "\n\n---\n\n".join([doc.page_content for doc in docs])
    
    if model_name == "4o":
        llm = llm_chain
    elif model_name == "4o-mini":
        llm = mini_llm_chain
    else:
        return "No model found"
    
    response = llm.invoke({
                        "context": context_text,
                        "query" : query
                        }
                    )
    return response.content