File size: 4,370 Bytes
809a13a 8790e06 809a13a 8790e06 809a13a 8790e06 809a13a 8790e06 809a13a 8790e06 809a13a 8790e06 8a1cfea 8790e06 8a1cfea 60031f6 8790e06 8a1cfea 60031f6 8790e06 8a1cfea 60031f6 8790e06 8a1cfea 8790e06 60031f6 809a13a 8790e06 60031f6 809a13a 8790e06 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 |
import gradio as gr
from huggingface_hub import InferenceClient
# Initialize the InferenceClient
client = InferenceClient("meta-llama/Llama-3.2-3B-Instruct")
def is_health_related(message):
# Simple heuristic to check if the message is health-related
health_keywords = ["health", "medical", "disease", "symptom", "treatment", "doctor", "patient", "medicine"]
message = message.lower()
for keyword in health_keywords:
if keyword in message:
return True
return False
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
if not is_health_related(message):
return "Sorry, I can't help you with that because I am just a bot who can help with health-related queries."
messages = [{"role": "system", "content": system_message}]
for val in history:
if val:
messages.append({"role": "user", "content": val})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
response = ""
for message in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = message.choices.delta.content
response += token
yield response
# Custom CSS to make it look like ChatGPT
css = """
body {
font-family: 'Inter', sans-serif;
background-color: #f0f0f0;
}
.gradio-container {
max-width: 700px;
margin: auto;
}
.gr-chat-container {
border: 1px solid #ddd;
border-radius: 5px;
padding: 10px;
background-color: #fff;
}
.gr-message {
padding: 10px;
border-bottom: 1px solid #ddd;
}
.gr-message:last-child {
border-bottom: none;
}
.gr-user-message {
color: #333;
background-color: #f7f7f7;
border-radius: 5px;
padding: 5px;
}
.gr-assistant-message {
color: #333;
background-color: #fff;
border-radius: 5px;
padding: 5px;
}
.gr-input {
padding: 10px;
border: 1px solid #ccc;
border-radius: 5px;
width: 100%;
}
.gr-input:focus {
border-color: #aaa;
}
.gr-button {
background-color: #4CAF50;
color: #fff;
padding: 10px 20px;
border: none;
border-radius: 5px;
cursor: pointer;
}
.gr-button:hover {
background-color: #3e8e41;
}
"""
# Create a custom chat interface using gr.Blocks
with gr.Blocks(css=css) as demo:
gr.Markdown("# Health Assistant Chatbot")
gr.Markdown("### Ask me any health-related questions.")
chatbot = gr.Chatbot(
value=[],
show_user_avatar=False,
show_bot_avatar=False,
width="100%",
)
input_box = gr.Textbox(
label="Type your message here",
placeholder="Type your message here",
show_label=False,
)
system_message = gr.Textbox(
value="You are a virtual Doctor Assistant. Your role is to assist healthcare professionals by providing accurate, evidence-based medical information, offering treatment options, and supporting patient care. Always prioritize patient safety, provide concise answers, and clearly state that your advice does not replace a doctor's judgment. Do not diagnose or prescribe treatments without human oversight.",
label="System message",
visible=False,
)
max_tokens = gr.Slider(
minimum=1,
maximum=2048,
value=512,
step=1,
label="Max new tokens",
visible=False,
)
temperature = gr.Slider(
minimum=0.1,
maximum=4.0,
value=0.7,
step=0.1,
label="Temperature",
visible=False,
)
top_p = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
visible=False,
)
def update_chat(message, history, system_message, max_tokens, temperature, top_p):
response = respond(message, history, system_message, max_tokens, temperature, top_p)
return chatbot.update(value=history + [(message, response)])
input_box.submit(
update_chat,
inputs=[input_box, chatbot, system_message, max_tokens, temperature, top_p],
outputs=chatbot,
)
if __name__ == "__main__":
demo.launch(share=True) |