File size: 3,564 Bytes
809a13a aacf3f8 809a13a aacf3f8 809a13a b4792a9 809a13a b4792a9 809a13a aacf3f8 8a1cfea aacf3f8 8790e06 aacf3f8 e7a8d70 aacf3f8 8790e06 aacf3f8 e7a8d70 aacf3f8 8790e06 60031f6 809a13a aacf3f8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 |
import gradio as gr
from huggingface_hub import InferenceClient
# Create an InferenceClient to interact with the model
client = InferenceClient("meta-llama/Llama-3.2-3B-Instruct")
# Define the function to generate a response
def respond(message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p):
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
response = ""
for message in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = message.choices[0].delta.content
response += token
yield response
# Custom CSS for styling
css = """
body {
font-family: 'Arial', sans-serif;
background-color: #f8f9fa; /* Light background */
color: #333;
}
.gr-button {
background-color: #0b2545 !important;
color: white !important;
border: none !important;
border-radius: 25px !important;
padding: 8px 20px !important;
font-size: 14px;
font-weight: bold;
cursor: pointer;
}
.gr-button:hover {
background-color: #0a1b35 !important;
}
.search-box {
border-radius: 20px;
border: 1px solid #ccc;
padding: 10px;
width: 100%;
font-size: 16px;
background-color: #ffffff;
}
"""
# Main function to create the interface
with gr.Blocks(css=css) as demo:
gr.Markdown("<h1 style='text-align: center;'>Health Assistant GPT</h1>")
gr.Markdown("<h3 style='text-align: center;'>What do you want to know about health and wellness?</h3>")
# Sidebar
with gr.Sidebar():
gr.Markdown("### Settings")
system_message = gr.Textbox(
value="You are a virtual health assistant designed to provide accurate and reliable information related to health, wellness, and medical topics. Your primary goal is to assist users with their health-related queries, offer general guidance, and suggest when to consult a licensed medical professional. If a user asks a question that is unrelated to health, wellness, or medical topics, respond politely but firmly.",
label="System message",
visible=False
)
max_tokens = gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens", visible=False)
temperature = gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature", visible=False)
top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", visible=False)
# Main content
with gr.Row():
with gr.Column(scale=7):
gr.Markdown("### Ask a health-related question:")
search_input = gr.Textbox(label="Search Input", placeholder="Type your health-related question here...", lines=1)
submit_button = gr.Button("Generate Response")
output = gr.Markdown()
with gr.Column(scale=3):
gr.Markdown("### Upload a relevant file (Optional):")
uploaded_file = gr.File(label="Upload PDF")
# Button click action to trigger response generation
submit_button.click(
fn=respond,
inputs=[search_input, [], system_message, max_tokens, temperature, top_p], # Empty history for fresh chat
outputs=output
)
demo.launch()
|