File size: 2,752 Bytes
ab646de
 
 
 
 
 
 
 
 
 
a76c40f
ab646de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a76c40f
 
 
 
cb69355
a76c40f
cb69355
 
a76c40f
 
 
 
 
 
 
 
 
ab646de
a76c40f
ab646de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a76c40f
cb69355
 
fddcd12
 
 
a76c40f
fddcd12
 
a76c40f
fddcd12
 
 
ab646de
fddcd12
ab646de
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
import gradio as gr
from huggingface_hub import InferenceClient

"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
client = InferenceClient("meta-llama/Llama-3.2-3B-Instruct")


def respond(
    model_name,
    message,
    history: list[tuple[str, str]],
    system_message,
):
    messages = [{"role": "system", "content": system_message}]

    for val in history:
        if val[0]:
            messages.append({"role": "user", "content": val[0]})
        if val[1]:
            messages.append({"role": "assistant", "content": val[1]})

    messages.append({"role": "user", "content": message})

    response = ""

    # Model selection based on the button click
    if model_name == "Llama":
        for message in client.chat_completion(
            messages,
            max_tokens=512,  # Set a default value for max_tokens
            stream=True,
            temperature=0.7,  # Set a default value for temperature
            top_p=0.95,  # Set a default value for top_p
        ):
            token = message.choices[0].delta.content
            response += token
    elif model_name == "Chatgpt":
        response = "ChatGPT functionality is not yet implemented."
    elif model_name == "Claude":
        response = "Claude functionality is not yet implemented."
    else:
        response = "Model not recognized."

    return response


# CSS for styling the interface
css = """
body {
    background-color: #06688E; /* Dark background */
    color: white; /* Text color for better visibility */
}
.gr-button {
    background-color: #42B3CE !important; /* White button color */
    color: black !important; /* Black text for contrast */
    border: none !important;
    padding: 8px 16px !important;
    border-radius: 5px !important;
}
.gr-button:hover {
    background-color: #e0e0e0 !important; /* Slightly lighter button on hover */
}
.gr-slider-container {
    color: white !important; /* Slider labels in white */
}
"""

# Define the Gradio interface with buttons and model selection
def gradio_interface(model_name, message, history, system_message):
    return respond(model_name, message, history, system_message)


demo = gr.Interface(
    fn=gradio_interface,
    inputs=[
        gr.Textbox(value="Hello!", label="User Message"),
        gr.Textbox(value="You are a virtual health assistant. Your primary goal is to assist with health-related queries.", label="System Message", visible=False),
        gr.Button("Chatgpt"),
        gr.Button("Llama"),
        gr.Button("Claude"),
    ],
    outputs="text",
    css=css,  # Pass the custom CSS here
)

if __name__ == "__main__":
    demo.launch(share=True)