File size: 3,077 Bytes
ab646de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fddcd12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab646de
 
 
 
 
fddcd12
ab646de
fddcd12
 
 
ab646de
fddcd12
ab646de
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
import gradio as gr
from huggingface_hub import InferenceClient

"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
client = InferenceClient("meta-llama/Llama-3.2-3B-Instruct")


def respond(
    message,
    history: list[tuple[str, str]],
    system_message,
    max_tokens,
    temperature,
    top_p,
):
    messages = [{"role": "system", "content": system_message}]

    for val in history:
        if val[0]:
            messages.append({"role": "user", "content": val[0]})
        if val[1]:
            messages.append({"role": "assistant", "content": val[1]})

    messages.append({"role": "user", "content": message})

    response = ""

    for message in client.chat_completion(
        messages,
        max_tokens=max_tokens,
        stream=True,
        temperature=temperature,
        top_p=top_p,
    ):
        token = message.choices[0].delta.content

        response += token
        yield response


# CSS for styling the interface
css = """
body {
    background-color: #06688E; /* Dark background */
    color: white; /* Text color for better visibility */
}
.gr-button {
    background-color: #42B3CE !important; /* White button color */
    color: black !important; /* Black text for contrast */
    border: none !important;
    padding: 8px 16px !important;
    border-radius: 5px !important;
}
.gr-button:hover {
    background-color: #e0e0e0 !important; /* Slightly lighter button on hover */
}
.gr-slider-container {
    color: white !important; /* Slider labels in white */
}
"""

# Function to trigger different AI models based on button click
def trigger_model(model_name, message, history, system_message, max_tokens, temperature, top_p):
    if model_name == "Llama":
        # Here, you can choose the llama model to generate a response
        return respond(message, history, system_message, max_tokens, temperature, top_p)
    elif model_name == "Chatgpt":
        # Placeholder for ChatGPT function (if needed)
        return "ChatGPT response goes here."
    elif model_name == "Claude":
        # Placeholder for Claude function (if needed)
        return "Claude response goes here."
    else:
        return "Model not found."


# Define the Gradio interface
demo = gr.Interface(
    fn=trigger_model,
    inputs=[
        gr.Textbox(value="Hello!", label="User Message"),
        gr.Textbox(value="System message", label="System Message", visible=False),
        gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
        gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
        gr.Slider(
            minimum=0.1,
            maximum=1.0,
            value=0.95,
            step=0.05,
            label="Top-p (nucleus sampling)"
        ),
        gr.Button("Chatgpt"),
        gr.Button("Llama"),
        gr.Button("Claude"),
    ],
    outputs="text",
    css=css,  # Pass the custom CSS here
)

if __name__ == "__main__":
    demo.launch(share=True)