Doc / app.py
Poonawala's picture
Update app.py
00ba831 verified
raw
history blame
3.9 kB
import gradio as gr
from huggingface_hub import InferenceClient
from PyPDF2 import PdfReader
# Initialize the Inference Client
client = InferenceClient("meta-llama/Llama-3.2-3B-Instruct")
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
uploaded_pdf=None
):
messages = [{"role": "system", "content": system_message}]
# Add previous conversation history to the messages
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
# If a new message is entered, add it to the conversation history
messages.append({"role": "user", "content": message})
# If a PDF is uploaded, process its content
if uploaded_pdf is not None:
file_content = extract_pdf_text(uploaded_pdf)
if file_content:
messages.append({"role": "user", "content": f"Document Content: {file_content}"})
# Get response from the model
response = ""
for message in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = message.choices[0].delta.content
response += token
yield response
def extract_pdf_text(file):
"""Extract text from a PDF file."""
try:
reader = PdfReader(file)
text = ""
for page in reader.pages:
text += page.extract_text()
return text
except Exception as e:
return f"Error extracting text from PDF: {str(e)}"
# CSS for styling the interface
css = """
body {
background-color: #1e2a38; /* Dark blue background */
color: #ffffff; /* White text for readability */
font-family: 'Arial', sans-serif; /* Clean and modern font */
}
.gr-button {
background-color: #42B3CE !important; /* Light blue button */
color: #2e3b4e !important; /* Dark text for contrast */
border: none !important;
padding: 10px 20px !important;
border-radius: 8px !important;
font-size: 16px;
font-weight: bold;
transition: background-color 0.3s ease, transform 0.2s ease;
}
.gr-button:hover {
background-color: #3189A2 !important; /* Darker blue on hover */
transform: scale(1.05);
}
.gr-button:active {
background-color: #267b88 !important; /* Even darker when clicked */
}
.gr-slider-container {
color: white !important; /* White slider labels */
font-size: 14px;
}
.gr-slider {
background-color: #0b2545 !important; /* Slider track color */
border-radius: 8px;
}
.gr-slider .gr-slider-active {
background-color: #42B3CE !important; /* Active slider color */
}
.gr-textbox input {
background-color: #2f3b4d;
color: white;
border: 2px solid #42B3CE;
padding: 12px;
border-radius: 8px;
font-size: 16px;
transition: border 0.3s ease;
}
.gr-textbox input:focus {
border-color: #3189A2;
}
"""
# Gradio interface
demo = gr.Interface(
fn=respond,
inputs=[
gr.Textbox(label="Your Message", placeholder="Type your question here...", lines=4),
gr.File(label="Upload a PDF", file_count="single", type="file"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens", visible=False),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature", visible=False),
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", visible=False),
],
outputs="text",
css=css, # Custom CSS
live=True,
title="Health Assistant Chat",
description="This is a health assistant that can chat with you about health-related topics. You can also upload a document for analysis.",
)
if __name__ == "__main__":
demo.launch(share=True)