|
import gradio as gr |
|
from huggingface_hub import InferenceClient |
|
from PyPDF2 import PdfReader |
|
|
|
|
|
client = InferenceClient("meta-llama/Llama-3.2-3B-Instruct") |
|
|
|
|
|
def respond( |
|
message, |
|
history: list[tuple[str, str]], |
|
system_message, |
|
max_tokens, |
|
temperature, |
|
top_p, |
|
uploaded_pdf=None |
|
): |
|
messages = [{"role": "system", "content": system_message}] |
|
|
|
|
|
for val in history: |
|
if val[0]: |
|
messages.append({"role": "user", "content": val[0]}) |
|
if val[1]: |
|
messages.append({"role": "assistant", "content": val[1]}) |
|
|
|
|
|
messages.append({"role": "user", "content": message}) |
|
|
|
|
|
if uploaded_pdf is not None: |
|
file_content = extract_pdf_text(uploaded_pdf) |
|
if file_content: |
|
messages.append({"role": "user", "content": f"Document Content: {file_content}"}) |
|
|
|
|
|
response = "" |
|
for message in client.chat_completion( |
|
messages, |
|
max_tokens=max_tokens, |
|
stream=True, |
|
temperature=temperature, |
|
top_p=top_p, |
|
): |
|
token = message.choices[0].delta.content |
|
response += token |
|
yield response |
|
|
|
|
|
def extract_pdf_text(file): |
|
"""Extract text from a PDF file.""" |
|
try: |
|
reader = PdfReader(file) |
|
text = "" |
|
for page in reader.pages: |
|
text += page.extract_text() |
|
return text |
|
except Exception as e: |
|
return f"Error extracting text from PDF: {str(e)}" |
|
|
|
|
|
|
|
css = """ |
|
body { |
|
background-color: #1e2a38; /* Dark blue background */ |
|
color: #ffffff; /* White text for readability */ |
|
font-family: 'Arial', sans-serif; /* Clean and modern font */ |
|
} |
|
.gr-button { |
|
background-color: #42B3CE !important; /* Light blue button */ |
|
color: #2e3b4e !important; /* Dark text for contrast */ |
|
border: none !important; |
|
padding: 10px 20px !important; |
|
border-radius: 8px !important; |
|
font-size: 16px; |
|
font-weight: bold; |
|
transition: background-color 0.3s ease, transform 0.2s ease; |
|
} |
|
.gr-button:hover { |
|
background-color: #3189A2 !important; /* Darker blue on hover */ |
|
transform: scale(1.05); |
|
} |
|
.gr-button:active { |
|
background-color: #267b88 !important; /* Even darker when clicked */ |
|
} |
|
.gr-slider-container { |
|
color: white !important; /* White slider labels */ |
|
font-size: 14px; |
|
} |
|
.gr-slider { |
|
background-color: #0b2545 !important; /* Slider track color */ |
|
border-radius: 8px; |
|
} |
|
.gr-slider .gr-slider-active { |
|
background-color: #42B3CE !important; /* Active slider color */ |
|
} |
|
.gr-textbox input { |
|
background-color: #2f3b4d; |
|
color: white; |
|
border: 2px solid #42B3CE; |
|
padding: 12px; |
|
border-radius: 8px; |
|
font-size: 16px; |
|
transition: border 0.3s ease; |
|
} |
|
.gr-textbox input:focus { |
|
border-color: #3189A2; |
|
} |
|
""" |
|
|
|
|
|
demo = gr.Interface( |
|
fn=respond, |
|
inputs=[ |
|
gr.Textbox(label="Your Message", placeholder="Type your question here...", lines=4), |
|
gr.File(label="Upload a PDF", file_count="single", type="file"), |
|
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens", visible=False), |
|
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature", visible=False), |
|
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", visible=False), |
|
], |
|
outputs="text", |
|
css=css, |
|
live=True, |
|
title="Health Assistant Chat", |
|
description="This is a health assistant that can chat with you about health-related topics. You can also upload a document for analysis.", |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch(share=True) |
|
|