|
import gradio as gr |
|
from huggingface_hub import InferenceClient |
|
|
|
|
|
client = InferenceClient("meta-llama/Llama-3.2-3B-Instruct") |
|
|
|
|
|
def respond(message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p): |
|
messages = [{"role": "system", "content": system_message}] |
|
|
|
for val in history: |
|
if val[0]: |
|
messages.append({"role": "user", "content": val[0]}) |
|
if val[1]: |
|
messages.append({"role": "assistant", "content": val[1]}) |
|
|
|
messages.append({"role": "user", "content": message}) |
|
|
|
response = "" |
|
for message in client.chat_completion( |
|
messages, |
|
max_tokens=max_tokens, |
|
stream=True, |
|
temperature=temperature, |
|
top_p=top_p, |
|
): |
|
token = message.choices[0].delta.content |
|
response += token |
|
yield response |
|
|
|
|
|
css = """ |
|
body { |
|
font-family: 'Arial', sans-serif; |
|
background-color: #f8f9fa; /* Light background */ |
|
color: #333; |
|
} |
|
.gr-button { |
|
background-color: #0b2545 !important; |
|
color: white !important; |
|
border: none !important; |
|
border-radius: 25px !important; |
|
padding: 8px 20px !important; |
|
font-size: 14px; |
|
font-weight: bold; |
|
cursor: pointer; |
|
} |
|
.gr-button:hover { |
|
background-color: #0a1b35 !important; |
|
} |
|
.search-box { |
|
border-radius: 20px; |
|
border: 1px solid #ccc; |
|
padding: 10px; |
|
width: 100%; |
|
font-size: 16px; |
|
background-color: #ffffff; |
|
} |
|
""" |
|
|
|
|
|
with gr.Blocks(css=css) as demo: |
|
gr.Markdown("<h1 style='text-align: center;'>Health Assistant GPT</h1>") |
|
gr.Markdown("<h3 style='text-align: center;'>What do you want to know about health and wellness?</h3>") |
|
|
|
|
|
with gr.Sidebar(): |
|
gr.Markdown("### Settings") |
|
system_message = gr.Textbox( |
|
value="You are a virtual health assistant designed to provide accurate and reliable information related to health, wellness, and medical topics. Your primary goal is to assist users with their health-related queries, offer general guidance, and suggest when to consult a licensed medical professional. If a user asks a question that is unrelated to health, wellness, or medical topics, respond politely but firmly.", |
|
label="System message", |
|
visible=False |
|
) |
|
max_tokens = gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens", visible=False) |
|
temperature = gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature", visible=False) |
|
top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", visible=False) |
|
|
|
|
|
with gr.Row(): |
|
with gr.Column(scale=7): |
|
gr.Markdown("### Ask a health-related question:") |
|
search_input = gr.Textbox(label="Search Input", placeholder="Type your health-related question here...", lines=1) |
|
submit_button = gr.Button("Generate Response") |
|
output = gr.Markdown() |
|
|
|
with gr.Column(scale=3): |
|
gr.Markdown("### Upload a relevant file (Optional):") |
|
uploaded_file = gr.File(label="Upload PDF") |
|
|
|
|
|
submit_button.click( |
|
fn=respond, |
|
inputs=[search_input, [], system_message, max_tokens, temperature, top_p], |
|
outputs=output |
|
) |
|
|
|
demo.launch() |
|
|