Poonawala commited on
Commit
439f105
·
verified ·
1 Parent(s): 385258d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +51 -25
app.py CHANGED
@@ -1,11 +1,10 @@
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("meta-llama/Llama-3.2-3B-Instruct")
8
-
9
 
10
  def respond(
11
  message,
@@ -27,7 +26,7 @@ def respond(
27
 
28
  response = ""
29
 
30
- for message in client.chat_completion(
31
  messages,
32
  max_tokens=max_tokens,
33
  stream=True,
@@ -39,6 +38,41 @@ def respond(
39
  response += token
40
  yield response
41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42
 
43
  # CSS for styling the interface
44
  css = """
@@ -46,7 +80,6 @@ body {
46
  background-color: #06688E; /* Dark background */
47
  color: white; /* Text color for better visibility */
48
  }
49
-
50
  .gr-button {
51
  background-color: #42B3CE !important; /* White button color */
52
  color: black !important; /* Black text for contrast */
@@ -54,39 +87,32 @@ body {
54
  padding: 8px 16px !important;
55
  border-radius: 5px !important;
56
  }
57
-
58
  .gr-button:hover {
59
  background-color: #e0e0e0 !important; /* Slightly lighter button on hover */
60
  }
61
-
62
  .gr-slider-container {
63
  color: white !important; /* Slider labels in white */
64
  }
65
  """
66
 
67
- """
68
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
69
- """
70
  with gr.Blocks() as demo:
71
- # Add all your components here, including buttons
72
- gr.Textbox(value="You are a virtual health assistant designed to provide accurate and reliable information related to health, wellness, and medical topics. Your primary goal is to assist users with their health-related queries, offer general guidance, and suggest when to consult a licensed medical professional. If a user asks a question that is unrelated to health, wellness, or medical topics, respond politely but firmly with: 'I'm sorry, I can't help with that because I am a virtual health assistant designed to assist with health-related needs. Please let me know if you have any health-related questions.' Never provide advice or information outside the health domain. Remain professional, empathetic, and clear in all responses. Always prioritize user safety and encourage professional medical consultation for critical or complex health concerns.", label="System message", visible=False)
73
 
74
- # Create buttons with event handlers
75
- gr.Button("Chatgpt").click(on_button_click, inputs="Chatgpt", outputs="text")
76
- gr.Button("Llama").click(on_button_click, inputs="Llama", outputs="text")
77
- gr.Button("Claude").click(on_button_click, inputs="Claude", outputs="text")
78
 
 
79
  gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens", visible=False)
80
  gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature", visible=False)
81
  gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", visible=False)
82
-
83
- # Optional: customize your layout with CSS if needed
84
- css = """
85
- /* Your custom CSS here */
86
- """
87
 
88
- demo.css = css, # Pass the custom CSS here
89
-
90
 
 
91
  if __name__ == "__main__":
92
  demo.launch(share=True)
 
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
3
 
4
+ # Define the InferenceClient for different models
5
+ client_chatgpt = InferenceClient("openai/gpt-3.5-turbo") # Example for ChatGPT model
6
+ client_llama = InferenceClient("meta-llama/Llama-3.2-3B-Instruct") # Llama model
7
+ client_claude = InferenceClient("anthropic/claude-1") # Claude model (adjust with correct model path)
 
8
 
9
  def respond(
10
  message,
 
26
 
27
  response = ""
28
 
29
+ for message in client_llama.chat_completion( # Defaulting to Llama, update dynamically later
30
  messages,
31
  max_tokens=max_tokens,
32
  stream=True,
 
38
  response += token
39
  yield response
40
 
41
+ # Function to handle button clicks for different models
42
+ def on_button_click(model_name, message, history, system_message, max_tokens, temperature, top_p):
43
+ # Choose the client based on the selected model
44
+ if model_name == "Chatgpt":
45
+ client = client_chatgpt
46
+ elif model_name == "Llama":
47
+ client = client_llama
48
+ elif model_name == "Claude":
49
+ client = client_claude
50
+ else:
51
+ return "Unknown model selected."
52
+
53
+ messages = [{"role": "system", "content": system_message}]
54
+
55
+ for val in history:
56
+ if val[0]:
57
+ messages.append({"role": "user", "content": val[0]})
58
+ if val[1]:
59
+ messages.append({"role": "assistant", "content": val[1]})
60
+
61
+ messages.append({"role": "user", "content": message})
62
+
63
+ response = ""
64
+
65
+ # Call the selected model for completion
66
+ for message in client.chat_completion(
67
+ messages,
68
+ max_tokens=max_tokens,
69
+ stream=True,
70
+ temperature=temperature,
71
+ top_p=top_p,
72
+ ):
73
+ token = message.choices[0].delta.content
74
+ response += token
75
+ yield response
76
 
77
  # CSS for styling the interface
78
  css = """
 
80
  background-color: #06688E; /* Dark background */
81
  color: white; /* Text color for better visibility */
82
  }
 
83
  .gr-button {
84
  background-color: #42B3CE !important; /* White button color */
85
  color: black !important; /* Black text for contrast */
 
87
  padding: 8px 16px !important;
88
  border-radius: 5px !important;
89
  }
 
90
  .gr-button:hover {
91
  background-color: #e0e0e0 !important; /* Slightly lighter button on hover */
92
  }
 
93
  .gr-slider-container {
94
  color: white !important; /* Slider labels in white */
95
  }
96
  """
97
 
98
+ # Interface using Blocks context
 
 
99
  with gr.Blocks() as demo:
100
+ # Add your components including buttons
101
+ gr.Textbox(value="You are a virtual health assistant...", label="System message", visible=False)
102
 
103
+ # Buttons to select the model
104
+ gr.Button("Chatgpt").click(on_button_click, inputs=["Chatgpt", "textbox", "history", "system_message", "max_tokens", "temperature", "top_p"], outputs="text")
105
+ gr.Button("Llama").click(on_button_click, inputs=["Llama", "textbox", "history", "system_message", "max_tokens", "temperature", "top_p"], outputs="text")
106
+ gr.Button("Claude").click(on_button_click, inputs=["Claude", "textbox", "history", "system_message", "max_tokens", "temperature", "top_p"], outputs="text")
107
 
108
+ # Sliders for max tokens, temperature, and top-p
109
  gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens", visible=False)
110
  gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature", visible=False)
111
  gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", visible=False)
 
 
 
 
 
112
 
113
+ # Apply the custom CSS for styling
114
+ demo.css = css
115
 
116
+ # Launch the app
117
  if __name__ == "__main__":
118
  demo.launch(share=True)