import gradio as gr from huggingface_hub import InferenceClient """ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference """ client = InferenceClient("meta-llama/Llama-3.2-3B-Instruct") def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response = "" for message in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = message.choices[0].delta.content response += token yield response # CSS for styling the interface css = """ body { background-color: #121212; /* Dark background */ color: white; /* Text color for better visibility */ } .gr-button { background-color: white !important; /* White button color */ color: black !important; /* Black text for contrast */ border: none !important; padding: 8px 16px !important; border-radius: 5px !important; } .gr-button:hover { background-color: #e0e0e0 !important; /* Slightly lighter button on hover */ } .gr-slider-container { color: white !important; /* Slider labels in white */ } """ """ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface """ demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a virtual Doctor Assistant. Your role is to assist healthcare professionals by providing accurate, evidence-based medical information, offering treatment options, and supporting patient care. Always prioritize patient safety, provide concise answers, and clearly state that your advice does not replace a doctor's judgment. Do not diagnose or prescribe treatments without human oversight.", label="System message", visible=False), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens", visible=False), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature", visible=False), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)",visible=False ), ], css=css, # Pass the custom CSS here ) if __name__ == "__main__": demo.launch(share=True)