import gradio as gr from huggingface_hub import InferenceClient # Create an InferenceClient to interact with the model client = InferenceClient("meta-llama/Llama-3.2-3B-Instruct") # Define the function to generate a response def respond(message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p): messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response = "" for message in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = message.choices[0].delta.content response += token yield response # Custom CSS for styling css = """ body { font-family: 'Arial', sans-serif; background-color: #f8f9fa; /* Light background */ color: #333; } .gr-button { background-color: #0b2545 !important; color: white !important; border: none !important; border-radius: 25px !important; padding: 8px 20px !important; font-size: 14px; font-weight: bold; cursor: pointer; } .gr-button:hover { background-color: #0a1b35 !important; } .search-box { border-radius: 20px; border: 1px solid #ccc; padding: 10px; width: 100%; font-size: 16px; background-color: #ffffff; } """ # Main function to create the interface with gr.Blocks(css=css) as demo: gr.Markdown("

Health Assistant GPT

") gr.Markdown("

What do you want to know about health and wellness?

") # Sidebar with gr.Sidebar(): gr.Markdown("### Settings") system_message = gr.Textbox( value="You are a virtual health assistant designed to provide accurate and reliable information related to health, wellness, and medical topics. Your primary goal is to assist users with their health-related queries, offer general guidance, and suggest when to consult a licensed medical professional. If a user asks a question that is unrelated to health, wellness, or medical topics, respond politely but firmly.", label="System message", visible=False ) max_tokens = gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens", visible=False) temperature = gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature", visible=False) top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", visible=False) # Main content with gr.Row(): with gr.Column(scale=7): gr.Markdown("### Ask a health-related question:") search_input = gr.Textbox(label="Search Input", placeholder="Type your health-related question here...", lines=1) submit_button = gr.Button("Generate Response") output = gr.Markdown() with gr.Column(scale=3): gr.Markdown("### Upload a relevant file (Optional):") uploaded_file = gr.File(label="Upload PDF") # Button click action to trigger response generation submit_button.click( fn=respond, inputs=[search_input, [], system_message, max_tokens, temperature, top_p], # Empty history for fresh chat outputs=output ) demo.launch()