import gradio as gr from huggingface_hub import InferenceClient # Define the InferenceClient for different models client_chatgpt = InferenceClient("openai/gpt-3.5-turbo") # Example for ChatGPT model client_llama = InferenceClient("meta-llama/Llama-3.2-3B-Instruct") # Llama model client_claude = InferenceClient("anthropic/claude-1") # Claude model (adjust with correct model path) def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response = "" for message in client_llama.chat_completion( # Defaulting to Llama, update dynamically later messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = message.choices[0].delta.content response += token yield response # Function to handle button clicks for different models def on_button_click(model_name, message, history, system_message, max_tokens, temperature, top_p): # Choose the client based on the selected model if model_name == "Chatgpt": client = client_chatgpt elif model_name == "Llama": client = client_llama elif model_name == "Claude": client = client_claude else: return "Unknown model selected." messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response = "" # Call the selected model for completion for message in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = message.choices[0].delta.content response += token yield response # CSS for styling the interface css = """ body { background-color: #06688E; /* Dark background */ color: white; /* Text color for better visibility */ } .gr-button { background-color: #42B3CE !important; /* White button color */ color: black !important; /* Black text for contrast */ border: none !important; padding: 8px 16px !important; border-radius: 5px !important; } .gr-button:hover { background-color: #e0e0e0 !important; /* Slightly lighter button on hover */ } .gr-slider-container { color: white !important; /* Slider labels in white */ } """ # Interface using Blocks context with gr.Blocks() as demo: # Add all your components here, including buttons system_message = gr.Textbox(value="You are a virtual health assistant...", label="System message", visible=False) message_input = gr.Textbox(label="User message") history = gr.State([]) # Keep the history of interactions max_tokens_slider = gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens") temperature_slider = gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature") top_p_slider = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)") # Buttons to select the model gr.Button("Chatgpt").click(on_button_click, inputs=[message_input, history, system_message, max_tokens_slider, temperature_slider, top_p_slider], outputs="text") gr.Button("Llama").click(on_button_click, inputs=[message_input, history, system_message, max_tokens_slider, temperature_slider, top_p_slider], outputs="text") gr.Button("Claude").click(on_button_click, inputs=[message_input, history, system_message, max_tokens_slider, temperature_slider, top_p_slider], outputs="text") # Optional: customize your layout with CSS if needed demo.css = css # Launch the app if __name__ == "__main__": demo.launch(share=True)