import gradio as gr from huggingface_hub import InferenceClient client = InferenceClient("meta-llama/Llama-3.2-3B-Instruct") def respond( model_name, message, history: list[tuple[str, str]], system_message, ): messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response = "" if model_name == "Llama": for message in client.chat_completion( messages, max_tokens=512, stream=True, temperature=0.7, top_p=0.95, ): token = message.choices[0].delta.content response += token elif model_name == "Chatgpt": response = "ChatGPT functionality is not yet implemented." elif model_name == "Claude": response = "Claude functionality is not yet implemented." else: response = "Model not recognized." return response # CSS for styling the interface css = """ body { background-color: #06688E; /* Dark background */ color: white; /* Text color for better visibility */ } .gr-button { background-color: #42B3CE !important; /* White button color */ color: black !important; /* Black text for contrast */ border: none !important; padding: 8px 16px !important; border-radius: 5px !important; } .gr-button:hover { background-color: #e0e0e0 !important; /* Slightly lighter button on hover */ } """ # Define the button click handler to hide the dropdown def on_button_click(model_name, message, history, system_message, dropdown_state): return respond(model_name, message, history, system_message), gr.update(visible=False) # Hide dropdown after click # Define the Gradio interface with buttons and model selection demo = gr.Interface( fn=on_button_click, inputs=[ gr.Textbox(value="Hello!", label="User Message"), gr.Textbox(value="You are a virtual health assistant. Your primary goal is to assist with health-related queries.", label="System Message", visible=False), gr.Button("Chatgpt"), gr.Button("Llama"), gr.Button("Claude"), gr.State() # To track the state of dropdown visibility ], outputs=[ "text", # For the model's response gr.Textbox(visible=False) # Dropdown (this textbox will be hidden after the button is clicked) ], css=css, # Pass the custom CSS here ) if __name__ == "__main__": demo.launch(share=True)