import gradio as gr from huggingface_hub import InferenceClient from PyPDF2 import PdfReader # Initialize the Inference Client client = InferenceClient("meta-llama/Llama-3.2-3B-Instruct") def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, uploaded_pdf=None ): messages = [{"role": "system", "content": system_message}] # Add previous conversation history to the messages for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) # If a new message is entered, add it to the conversation history messages.append({"role": "user", "content": message}) # If a PDF is uploaded, process its content if uploaded_pdf is not None: file_content = extract_pdf_text(uploaded_pdf) if file_content: messages.append({"role": "user", "content": f"Document Content: {file_content}"}) # Get response from the model response = "" for message in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = message.choices[0].delta.content response += token yield response def extract_pdf_text(file): """Extract text from a PDF file.""" try: reader = PdfReader(file) text = "" for page in reader.pages: text += page.extract_text() return text except Exception as e: return f"Error extracting text from PDF: {str(e)}" # CSS for styling the interface css = """ body { background-color: #1e2a38; /* Dark blue background */ color: #ffffff; /* White text for readability */ font-family: 'Arial', sans-serif; /* Clean and modern font */ } .gr-button { background-color: #42B3CE !important; /* Light blue button */ color: #2e3b4e !important; /* Dark text for contrast */ border: none !important; padding: 10px 20px !important; border-radius: 8px !important; font-size: 16px; font-weight: bold; transition: background-color 0.3s ease, transform 0.2s ease; } .gr-button:hover { background-color: #3189A2 !important; /* Darker blue on hover */ transform: scale(1.05); } .gr-button:active { background-color: #267b88 !important; /* Even darker when clicked */ } .gr-slider-container { color: white !important; /* White slider labels */ font-size: 14px; } .gr-slider { background-color: #0b2545 !important; /* Slider track color */ border-radius: 8px; } .gr-slider .gr-slider-active { background-color: #42B3CE !important; /* Active slider color */ } .gr-textbox input { background-color: #2f3b4d; color: white; border: 2px solid #42B3CE; padding: 12px; border-radius: 8px; font-size: 16px; transition: border 0.3s ease; } .gr-textbox input:focus { border-color: #3189A2; } """ # Gradio interface demo = gr.Interface( fn=respond, inputs=[ gr.Textbox(label="Your Message", placeholder="Type your question here...", lines=4), gr.File(label="Upload a PDF", file_count="single", type="file"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens", visible=False), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature", visible=False), gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", visible=False), ], outputs="text", css=css, # Custom CSS live=True, title="Health Assistant Chat", description="This is a health assistant that can chat with you about health-related topics. You can also upload a document for analysis.", ) if __name__ == "__main__": demo.launch(share=True)