Spaces:
Sleeping
Sleeping
# Configure page settings (MUST BE FIRST STREAMLIT COMMAND) | |
import streamlit as st | |
from streamlit_option_menu import option_menu | |
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM | |
from PyPDF2 import PdfReader | |
# Set page config | |
st.set_page_config( | |
page_title="Disease Analysis GPT", | |
layout="wide", | |
initial_sidebar_state="expanded" | |
) | |
# Load Hugging Face models and tokenizer for text generation | |
def load_model(): | |
tokenizer = AutoTokenizer.from_pretrained("harishussain12/Disease_Managment") | |
model = AutoModelForCausalLM.from_pretrained("harishussain12/Disease_Managment") | |
return tokenizer, model | |
# Function to create a text generation pipeline | |
def create_pipeline(): | |
tokenizer, model = load_model() | |
return pipeline("text-generation", model=model, tokenizer=tokenizer) | |
# Function to extract text from PDF file | |
def read_pdf(file): | |
try: | |
reader = PdfReader(file) | |
text = "" | |
for page in reader.pages: | |
text += page.extract_text() | |
return text | |
except Exception as e: | |
return f"Error reading PDF: {e}" | |
# Load pipelines | |
text_pipeline = create_pipeline() | |
# Custom CSS for styling | |
st.markdown( | |
""" | |
<style> | |
body { | |
font-family: 'Arial', sans-serif; | |
} | |
.stButton button { | |
background-color: #0b2545; | |
color: white; | |
border: none; | |
border-radius: 25px; | |
padding: 8px 20px; | |
font-size: 14px; | |
font-weight: bold; | |
cursor: pointer; | |
} | |
.stButton button:hover { | |
background-color: #0a1b35; | |
} | |
.search-box { | |
border-radius: 20px; | |
border: 1px solid #ccc; | |
padding: 10px; | |
width: 100%; | |
font-size: 16px; | |
background-color: #ffffff; | |
} | |
.info-box { | |
background-color: #f8f9fa; | |
border-left: 5px solid #0b2545; | |
padding: 15px; | |
border-radius: 5px; | |
font-size: 14px; | |
} | |
</style> | |
""", | |
unsafe_allow_html=True | |
) | |
# Sidebar | |
with st.sidebar: | |
new_chat_button = st.button("New Chat", key="new_chat", help="Start a new chat to ask a different question.") | |
if new_chat_button: | |
st.session_state.clear() # Clear session state to simulate a new chat | |
selected = option_menu( | |
menu_title=None, | |
options=[" Home", " Discover"], | |
icons=["house", "search"], | |
menu_icon="cast", | |
default_index=0, | |
styles={ | |
"container": {"padding": "0!important", "background-color": "#3e4a5b"}, | |
"icon": {"color": "#ffffff", "font-size": "16px"}, | |
"nav-link": { | |
"font-size": "15px", | |
"text-align": "left", | |
"margin": "0px", | |
"color": "#ffffff", | |
"font-weight": "bold", | |
"padding": "10px 20px", | |
}, | |
"nav-link-selected": {"background-color": "#0b2545", "color": "white"}, | |
} | |
) | |
# Main content | |
col1, col2, col3 = st.columns([1, 2, 1]) | |
with col2: | |
st.markdown("<h1 style='text-align: center;'>Disease Analysis GPT</h1>", unsafe_allow_html=True) | |
st.markdown("<h3 style='text-align: center;'>What do you want to know?</h3>", unsafe_allow_html=True) | |
# Model selection (now including Document Analysis) | |
model_selection = st.selectbox( | |
"Select a model", | |
options=["Disease Analysis", "Document Analysis"], | |
index=0 | |
) | |
# If the user selects Document Analysis, show an error and prompt them to switch to Disease Analysis | |
if model_selection == "Document Analysis": | |
st.error("Please switch to 'Disease Analysis' model for generating responses. Document Analysis is not available in this version.") | |
# Search box | |
search_input = st.text_input( | |
"", | |
placeholder="Type your question here...", | |
label_visibility="collapsed", | |
help="Ask anything related to disease management." | |
) | |
# File upload below search box | |
uploaded_file = st.file_uploader("Upload a PDF file", type="pdf", help="Attach relevant files or documents to your query.") | |
if search_input: | |
with st.spinner("Generating response..."): | |
try: | |
if model_selection == "Disease Analysis": | |
context = "" | |
if uploaded_file is not None: | |
file_content = read_pdf(uploaded_file) | |
if "Error" in file_content: | |
st.error(file_content) | |
else: | |
context = file_content | |
query_input = search_input + (f"\n\nContext:\n{context}" if context else "") | |
response = text_pipeline(query_input, max_length=200, num_return_sequences=1) | |
st.markdown(f"### Response:\n{response[0]['generated_text']}") | |
except Exception as e: | |
st.error(f"Error generating response: {str(e)}") | |