|
import numpy as np |
|
import pandas as pd |
|
import gradio as gr |
|
from tensorflow.keras.applications import MobileNetV2 |
|
from tensorflow.keras.preprocessing.image import load_img, img_to_array |
|
from tensorflow.keras.applications.mobilenet_v2 import preprocess_input, decode_predictions |
|
from fuzzywuzzy import fuzz |
|
from transformers import pipeline |
|
import requests |
|
from PIL import Image |
|
from io import BytesIO |
|
|
|
|
|
models = { |
|
"Flan-T5 Small": pipeline("text2text-generation", model="BhavaishKumar112/flan-t5-small"), |
|
"GPT-Neo 125M": pipeline("text-generation", model="BhavaishKumar112/gpt-neo-125M"), |
|
"Final GPT-2 Trained": pipeline("text-generation", model="BhavaishKumar112/finalgpt2trained") |
|
} |
|
|
|
|
|
cuisines = ["Thai", "Indian", "Chinese", "Italian"] |
|
|
|
|
|
dataset_path = "Food_Recipe.csv" |
|
data_df = pd.read_csv(dataset_path) |
|
|
|
|
|
mobilenet_model = MobileNetV2(weights="imagenet") |
|
|
|
|
|
def preprocess_image(image_path, target_size=(224, 224)): |
|
image = load_img(image_path, target_size=target_size) |
|
image_array = img_to_array(image) |
|
image_array = np.expand_dims(image_array, axis=0) |
|
return preprocess_input(image_array) |
|
|
|
|
|
def classify_image(image): |
|
try: |
|
image_array = preprocess_image(image) |
|
predictions = mobilenet_model.predict(image_array) |
|
decoded_predictions = decode_predictions(predictions, top=3)[0] |
|
return decoded_predictions |
|
except Exception as e: |
|
print(f"Error during classification: {e}") |
|
return [] |
|
|
|
|
|
def map_to_recipe(classification_results): |
|
for result in classification_results: |
|
best_match = None |
|
best_score = 0 |
|
for index, row in data_df.iterrows(): |
|
score = fuzz.partial_ratio(result[1].lower(), row["name"].lower()) |
|
if score > best_score: |
|
best_score = score |
|
best_match = row |
|
if best_score >= 70: |
|
return best_match |
|
return None |
|
|
|
|
|
def generate_summary(recipe): |
|
ingredients = recipe.get("ingredients_name", "No ingredients provided") |
|
time_to_cook = recipe.get("time_to_cook", "Time to cook not provided") |
|
instructions = recipe.get("instructions", "No instructions provided") |
|
return f"Ingredients: {ingredients}\n\nTime to Cook: {time_to_cook}\n\nInstructions: {instructions}" |
|
|
|
|
|
def get_recipe_details(image): |
|
classification_results = classify_image(image) |
|
if not classification_results: |
|
return "Error: No classification results found for the image." |
|
recipe = map_to_recipe(classification_results) |
|
if recipe is not None: |
|
return generate_summary(recipe) |
|
else: |
|
return "No matching recipe found for this image." |
|
|
|
|
|
def generate_recipe(input_text, selected_model, selected_cuisine): |
|
prompt = ( |
|
f"Generate a detailed and structured {selected_cuisine} recipe for {input_text}. " |
|
f"Include all the necessary details such as ingredients under an 'Ingredients' heading " |
|
f"and steps under a 'Recipe' heading. Ensure the response is concise and well-organized." |
|
) |
|
model = models[selected_model] |
|
output = model(prompt, max_length=500, num_return_sequences=1)[0]['generated_text'] |
|
return output |
|
|
|
|
|
def fetch_recipe_image(recipe_name): |
|
matching_row = data_df[data_df['name'].str.contains(recipe_name, case=False, na=False)] |
|
if not matching_row.empty: |
|
image_url = matching_row.iloc[0]['image_url'] |
|
try: |
|
response = requests.get(image_url) |
|
img = Image.open(BytesIO(response.content)) |
|
return img |
|
except Exception as e: |
|
return f"Error fetching image: {e}" |
|
else: |
|
return "No matching recipe found. Please check the recipe name." |
|
|
|
|
|
def main(): |
|
with gr.Blocks(css=""" |
|
/* General Body Styling */ |
|
body { |
|
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif; |
|
background-color: #f5f5f5; /* Light background */ |
|
margin: 0; |
|
padding: 0; |
|
color: #333; /* Dark text */ |
|
} |
|
|
|
/* Header Styling */ |
|
.header { |
|
background-color: #006064; /* Professional Blue */ |
|
color: white; |
|
padding: 20px; |
|
font-size: 24px; |
|
font-weight: bold; |
|
text-align: center; |
|
border-radius: 10px; |
|
} |
|
|
|
/* Card Style for Tabs */ |
|
.tab-container { |
|
background-color: white; |
|
padding: 20px; |
|
border-radius: 8px; |
|
box-shadow: 0 4px 12px rgba(0, 0, 0, 0.1); |
|
margin-top: 20px; |
|
} |
|
|
|
/* Card for each input section */ |
|
.card { |
|
background-color: #ffffff; |
|
padding: 15px; |
|
border-radius: 8px; |
|
box-shadow: 0 2px 8px rgba(0, 0, 0, 0.08); |
|
margin-bottom: 20px; |
|
} |
|
|
|
.card-title { |
|
font-size: 18px; |
|
font-weight: bold; |
|
color: #006064; |
|
margin-bottom: 10px; |
|
} |
|
|
|
/* Inputs and Buttons */ |
|
.input-text, .radio, .button { |
|
width: 100%; |
|
padding: 12px; |
|
border-radius: 8px; |
|
border: 1px solid #ddd; |
|
background-color: #f5f5f5; |
|
color: #333; |
|
font-size: 16px; |
|
} |
|
|
|
.input-text:focus, .radio:focus, .button:focus { |
|
border-color: #006064; |
|
} |
|
|
|
.button { |
|
background-color: #006064; |
|
color: white; |
|
font-weight: bold; |
|
cursor: pointer; |
|
} |
|
|
|
.button:hover { |
|
background-color: #004d40; /* Darker shade of blue on hover */ |
|
} |
|
|
|
/* Output Box */ |
|
.output-box { |
|
background-color: #ffffff; |
|
padding: 20px; |
|
border-radius: 8px; |
|
box-shadow: 0 2px 8px rgba(0, 0, 0, 0.08); |
|
font-size: 16px; |
|
color: #333; |
|
max-height: 350px; |
|
overflow-y: auto; |
|
white-space: pre-wrap; |
|
} |
|
|
|
.output-box img { |
|
max-width: 100%; |
|
border-radius: 8px; |
|
} |
|
|
|
/* Tab Title */ |
|
.tab-title { |
|
font-size: 22px; |
|
font-weight: bold; |
|
color: #006064; |
|
margin-bottom: 10px; |
|
} |
|
""") as app: |
|
|
|
with gr.Tab("Recipe Generator"): |
|
gr.HTML("<div class='header'>Recipe Generator</div>") |
|
with gr.Column(visible=True): |
|
with gr.Box(elem_classes=["tab-container"]): |
|
recipe_input = gr.Textbox(label="Enter Recipe Name or Ingredients", placeholder="e.g., Chicken curry or chicken, garlic, onions", elem_classes=["input-text"]) |
|
selected_cuisine = gr.Radio(choices=cuisines, label="Cuisine", value="Indian", elem_classes=["radio"]) |
|
selected_model = gr.Radio(choices=list(models.keys()), label="Model", value="Flan-T5 Small", elem_classes=["radio"]) |
|
generate_button = gr.Button("Generate Recipe", elem_classes=["button"]) |
|
recipe_output = gr.Textbox(label="Recipe", lines=15, elem_classes=["output-box"]) |
|
|
|
generate_button.click(generate_recipe, inputs=[recipe_input, selected_model, selected_cuisine], outputs=recipe_output) |
|
|
|
with gr.Tab("Recipe Finder from Image"): |
|
gr.HTML("<div class='header'>Recipe Finder from Image</div>") |
|
with gr.Column(visible=True): |
|
with gr.Box(elem_classes=["tab-container"]): |
|
image_input = gr.Image(type="filepath", label="Upload an Image") |
|
image_output = gr.Textbox(label="Recipe Details", lines=10, elem_classes=["output-box"]) |
|
image_input.change(get_recipe_details, inputs=image_input, outputs=image_output) |
|
|
|
with gr.Tab("Recipe Image Search"): |
|
gr.HTML("<div class='header'>Recipe Image Search</div>") |
|
with gr.Column(visible=True): |
|
with gr.Box(elem_classes=["tab-container"]): |
|
recipe_name_input = gr.Textbox(label="Recipe Name", placeholder="e.g., Mixed Sprouts in Chettinad Masala Recipe", elem_classes=["input-text"]) |
|
fetch_image_button |
|
|