File-Test / app.py
Poonawala's picture
Update app.py
86d1671 verified
raw
history blame
5.24 kB
import gradio as gr
from langchain_community.vectorstores import FAISS
from langchain_community.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain.chains import ConversationalRetrievalChain
from langchain_community.llms import HuggingFaceEndpoint
from langchain.chains import ConversationChain
from langchain.memory import ConversationBufferMemory
import os
api_token = os.getenv("HF_TOKEN")
# List of LLMs
list_llm = ["meta-llama/Meta-Llama-3-8B-Instruct", "mistralai/Mistral-7B-Instruct-v0.2"]
list_llm_simple = [os.path.basename(llm) for llm in list_llm]
# Load and split PDF documents
def load_doc(list_file_path):
loaders = [PyPDFLoader(x) for x in list_file_path]
pages = []
for loader in loaders:
pages.extend(loader.load())
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1024, chunk_overlap=64)
doc_splits = text_splitter.split_documents(pages)
return doc_splits
# Create vector database
def create_db(splits):
embeddings = HuggingFaceEmbeddings()
vectordb = FAISS.from_documents(splits, embeddings)
return vectordb
# Initialize LLM chain
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db):
if llm_model == "meta-llama/Meta-Llama-3-8B-Instruct":
llm = HuggingFaceEndpoint(
repo_id=llm_model,
huggingfacehub_api_token=api_token,
temperature=temperature,
max_new_tokens=max_tokens,
top_k=top_k,
)
else:
llm = HuggingFaceEndpoint(
huggingfacehub_api_token=api_token,
repo_id=llm_model,
temperature=temperature,
max_new_tokens=max_tokens,
top_k=top_k,
)
memory = ConversationBufferMemory(
memory_key="chat_history",
output_key='answer',
return_messages=True
)
retriever = vector_db.as_retriever()
qa_chain = ConversationalRetrievalChain.from_llm(
llm,
retriever=retriever,
chain_type="stuff",
memory=memory,
return_source_documents=True,
verbose=False,
)
return qa_chain
# Function to handle chatbot responses
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
vector_db,
llm_model,
):
# Initialize LLM chain if not already initialized
if not hasattr(respond, 'qa_chain'):
respond.qa_chain = initialize_llmchain(llm_model, temperature, max_tokens, top_p, vector_db)
# Format chat history
formatted_chat_history = []
for user_message, bot_message in history:
formatted_chat_history.append(f"User: {user_message}")
formatted_chat_history.append(f"Assistant: {bot_message}")
formatted_chat_history.append(f"User: {message}")
# Generate response using QA chain
response = respond.qa_chain.invoke({"question": message, "chat_history": formatted_chat_history})
response_answer = response["answer"]
if response_answer.find("Helpful Answer:") != -1:
response_answer = response_answer.split("Helpful Answer:")[-1]
return response_answer
# CSS for styling the interface
css = """
body {
background-color: #06688E; /* Dark background */
color: white; /* Text color for better visibility */
}
.gr-button {
background-color: #42B3CE !important; /* White button color */
color: black !important; /* Black text for contrast */
border: none !important;
padding: 8px 16px !important;
border-radius: 5px !important;
}
.gr-button:hover {
background-color: #e0e0e0 !important; /* Slightly lighter button on hover */
}
.gr-slider-container {
color: white !important; /* Slider labels in white */
}
"""
# Initialize database and LLM chain
def initialize_database_and_llm(list_file_obj, llm_option, max_tokens, temperature, top_p):
list_file_path = [x.name for x in list_file_obj if x is not None]
doc_splits = load_doc(list_file_path)
vector_db = create_db(doc_splits)
llm_name = list_llm[llm_option]
return vector_db, llm_name
# Gradio interface
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Files(file_count="multiple", file_types=["pdf"], label="Upload PDF documents", visible=False),
gr.Radio(list_llm_simple, label="Available LLMs", value=list_llm_simple, visible=False),
gr.Slider(minimum=128, maximum=9192, value=4096, step=128, label="Max new tokens", visible=False),
gr.Slider(minimum=0.01, maximum=1.0, value=0.5, step=0.1, label="Temperature", visible=False),
gr.Slider(minimum=1, maximum=10, value=3, step=1, label="Top-k", visible=False),
],
css=css,
title="RAG PDF Chatbot",
description="Query your PDF documents using a Retrieval Augmented Generation (RAG) chatbot.",
)
# Preprocessing events
demo.preprocess(
initialize_database_and_llm,
inputs=["document", "llm_btn", "slider_maxtokens", "slider_temperature", "slider_topk"],
outputs=["vector_db", "llm_model"],
api_name="initialize",
)
if __name__ == "__main__":
demo.launch(share=True)