Delete app.py
Browse files
app.py
DELETED
@@ -1,231 +0,0 @@
|
|
1 |
-
import numpy as np
|
2 |
-
import pandas as pd
|
3 |
-
import gradio as gr
|
4 |
-
from tensorflow.keras.applications import MobileNetV2
|
5 |
-
from tensorflow.keras.preprocessing.image import load_img, img_to_array
|
6 |
-
from tensorflow.keras.applications.mobilenet_v2 import preprocess_input, decode_predictions
|
7 |
-
from fuzzywuzzy import fuzz
|
8 |
-
from transformers import pipeline
|
9 |
-
import requests
|
10 |
-
from PIL import Image
|
11 |
-
from io import BytesIO
|
12 |
-
|
13 |
-
# Load models using pipeline for recipe generation
|
14 |
-
models = {
|
15 |
-
"Flan-T5 Small": pipeline("text2text-generation", model="BhavaishKumar112/flan-t5-small"),
|
16 |
-
"GPT-Neo 125M": pipeline("text-generation", model="BhavaishKumar112/gpt-neo-125M"),
|
17 |
-
"Final GPT-2 Trained": pipeline("text-generation", model="BhavaishKumar112/finalgpt2trained")
|
18 |
-
}
|
19 |
-
|
20 |
-
# Supported cuisines for recipe generation
|
21 |
-
cuisines = ["Thai", "Indian", "Chinese", "Italian"]
|
22 |
-
|
23 |
-
# Load the dataset for image classification and recipe search
|
24 |
-
dataset_path = "Food_Recipe.csv" # Update with your dataset path
|
25 |
-
data_df = pd.read_csv(dataset_path)
|
26 |
-
|
27 |
-
# Load MobileNetV2 pre-trained model for image classification
|
28 |
-
mobilenet_model = MobileNetV2(weights="imagenet")
|
29 |
-
|
30 |
-
# Function to preprocess images
|
31 |
-
def preprocess_image(image_path, target_size=(224, 224)):
|
32 |
-
image = load_img(image_path, target_size=target_size)
|
33 |
-
image_array = img_to_array(image)
|
34 |
-
image_array = np.expand_dims(image_array, axis=0)
|
35 |
-
return preprocess_input(image_array)
|
36 |
-
|
37 |
-
# Function to classify an image
|
38 |
-
def classify_image(image):
|
39 |
-
try:
|
40 |
-
image_array = preprocess_image(image)
|
41 |
-
predictions = mobilenet_model.predict(image_array)
|
42 |
-
decoded_predictions = decode_predictions(predictions, top=3)[0]
|
43 |
-
return decoded_predictions
|
44 |
-
except Exception as e:
|
45 |
-
print(f"Error during classification: {e}")
|
46 |
-
return []
|
47 |
-
|
48 |
-
# Map classification to recipe using fuzzy matching
|
49 |
-
def map_to_recipe(classification_results):
|
50 |
-
for result in classification_results:
|
51 |
-
best_match = None
|
52 |
-
best_score = 0
|
53 |
-
for index, row in data_df.iterrows():
|
54 |
-
score = fuzz.partial_ratio(result[1].lower(), row["name"].lower())
|
55 |
-
if score > best_score:
|
56 |
-
best_score = score
|
57 |
-
best_match = row
|
58 |
-
if best_score >= 70:
|
59 |
-
return best_match
|
60 |
-
return None
|
61 |
-
|
62 |
-
# Generate recipe summary
|
63 |
-
def generate_summary(recipe):
|
64 |
-
ingredients = recipe.get("ingredients_name", "No ingredients provided")
|
65 |
-
time_to_cook = recipe.get("time_to_cook", "Time to cook not provided")
|
66 |
-
instructions = recipe.get("instructions", "No instructions provided")
|
67 |
-
return f"Ingredients: {ingredients}\n\nTime to Cook: {time_to_cook}\n\nInstructions: {instructions}"
|
68 |
-
|
69 |
-
# Function to handle image input and return recipe details
|
70 |
-
def get_recipe_details(image):
|
71 |
-
classification_results = classify_image(image)
|
72 |
-
if not classification_results:
|
73 |
-
return "Error: No classification results found for the image."
|
74 |
-
recipe = map_to_recipe(classification_results)
|
75 |
-
if recipe is not None:
|
76 |
-
return generate_summary(recipe)
|
77 |
-
else:
|
78 |
-
return "No matching recipe found for this image."
|
79 |
-
|
80 |
-
# Function for recipe generation (as before)
|
81 |
-
def generate_recipe(input_text, selected_model, selected_cuisine):
|
82 |
-
prompt = (
|
83 |
-
f"Generate a detailed and structured {selected_cuisine} recipe for {input_text}. "
|
84 |
-
f"Include all the necessary details such as ingredients under an 'Ingredients' heading "
|
85 |
-
f"and steps under a 'Recipe' heading. Ensure the response is concise and well-organized."
|
86 |
-
)
|
87 |
-
model = models[selected_model]
|
88 |
-
output = model(prompt, max_length=500, num_return_sequences=1)[0]['generated_text']
|
89 |
-
return output
|
90 |
-
|
91 |
-
# Function to fetch and display the image for a recipe name
|
92 |
-
def fetch_recipe_image(recipe_name):
|
93 |
-
matching_row = data_df[data_df['name'].str.contains(recipe_name, case=False, na=False)]
|
94 |
-
if not matching_row.empty:
|
95 |
-
image_url = matching_row.iloc[0]['image_url']
|
96 |
-
try:
|
97 |
-
response = requests.get(image_url)
|
98 |
-
img = Image.open(BytesIO(response.content))
|
99 |
-
return img
|
100 |
-
except Exception as e:
|
101 |
-
return f"Error fetching image: {e}"
|
102 |
-
else:
|
103 |
-
return "No matching recipe found. Please check the recipe name."
|
104 |
-
|
105 |
-
# Gradio interface with updated professional design
|
106 |
-
def main():
|
107 |
-
with gr.Blocks(css="""
|
108 |
-
/* General Body Styling */
|
109 |
-
body {
|
110 |
-
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
|
111 |
-
background-color: #f5f5f5; /* Light background */
|
112 |
-
margin: 0;
|
113 |
-
padding: 0;
|
114 |
-
color: #333; /* Dark text */
|
115 |
-
}
|
116 |
-
|
117 |
-
/* Header Styling */
|
118 |
-
.header {
|
119 |
-
background-color: #006064; /* Professional Blue */
|
120 |
-
color: white;
|
121 |
-
padding: 20px;
|
122 |
-
font-size: 24px;
|
123 |
-
font-weight: bold;
|
124 |
-
text-align: center;
|
125 |
-
border-radius: 10px;
|
126 |
-
}
|
127 |
-
|
128 |
-
/* Card Style for Tabs */
|
129 |
-
.tab-container {
|
130 |
-
background-color: white;
|
131 |
-
padding: 20px;
|
132 |
-
border-radius: 8px;
|
133 |
-
box-shadow: 0 4px 12px rgba(0, 0, 0, 0.1);
|
134 |
-
margin-top: 20px;
|
135 |
-
}
|
136 |
-
|
137 |
-
/* Card for each input section */
|
138 |
-
.card {
|
139 |
-
background-color: #ffffff;
|
140 |
-
padding: 15px;
|
141 |
-
border-radius: 8px;
|
142 |
-
box-shadow: 0 2px 8px rgba(0, 0, 0, 0.08);
|
143 |
-
margin-bottom: 20px;
|
144 |
-
}
|
145 |
-
|
146 |
-
.card-title {
|
147 |
-
font-size: 18px;
|
148 |
-
font-weight: bold;
|
149 |
-
color: #006064;
|
150 |
-
margin-bottom: 10px;
|
151 |
-
}
|
152 |
-
|
153 |
-
/* Inputs and Buttons */
|
154 |
-
.input-text, .radio, .button {
|
155 |
-
width: 100%;
|
156 |
-
padding: 12px;
|
157 |
-
border-radius: 8px;
|
158 |
-
border: 1px solid #ddd;
|
159 |
-
background-color: #f5f5f5;
|
160 |
-
color: #333;
|
161 |
-
font-size: 16px;
|
162 |
-
}
|
163 |
-
|
164 |
-
.input-text:focus, .radio:focus, .button:focus {
|
165 |
-
border-color: #006064;
|
166 |
-
}
|
167 |
-
|
168 |
-
.button {
|
169 |
-
background-color: #006064;
|
170 |
-
color: white;
|
171 |
-
font-weight: bold;
|
172 |
-
cursor: pointer;
|
173 |
-
}
|
174 |
-
|
175 |
-
.button:hover {
|
176 |
-
background-color: #004d40; /* Darker shade of blue on hover */
|
177 |
-
}
|
178 |
-
|
179 |
-
/* Output Box */
|
180 |
-
.output-box {
|
181 |
-
background-color: #ffffff;
|
182 |
-
padding: 20px;
|
183 |
-
border-radius: 8px;
|
184 |
-
box-shadow: 0 2px 8px rgba(0, 0, 0, 0.08);
|
185 |
-
font-size: 16px;
|
186 |
-
color: #333;
|
187 |
-
max-height: 350px;
|
188 |
-
overflow-y: auto;
|
189 |
-
white-space: pre-wrap;
|
190 |
-
}
|
191 |
-
|
192 |
-
.output-box img {
|
193 |
-
max-width: 100%;
|
194 |
-
border-radius: 8px;
|
195 |
-
}
|
196 |
-
|
197 |
-
/* Tab Title */
|
198 |
-
.tab-title {
|
199 |
-
font-size: 22px;
|
200 |
-
font-weight: bold;
|
201 |
-
color: #006064;
|
202 |
-
margin-bottom: 10px;
|
203 |
-
}
|
204 |
-
""") as app:
|
205 |
-
|
206 |
-
with gr.Tab("Recipe Generator"):
|
207 |
-
gr.HTML("<div class='header'>Recipe Generator</div>")
|
208 |
-
with gr.Column(visible=True):
|
209 |
-
with gr.Box(elem_classes=["tab-container"]):
|
210 |
-
recipe_input = gr.Textbox(label="Enter Recipe Name or Ingredients", placeholder="e.g., Chicken curry or chicken, garlic, onions", elem_classes=["input-text"])
|
211 |
-
selected_cuisine = gr.Radio(choices=cuisines, label="Cuisine", value="Indian", elem_classes=["radio"])
|
212 |
-
selected_model = gr.Radio(choices=list(models.keys()), label="Model", value="Flan-T5 Small", elem_classes=["radio"])
|
213 |
-
generate_button = gr.Button("Generate Recipe", elem_classes=["button"])
|
214 |
-
recipe_output = gr.Textbox(label="Recipe", lines=15, elem_classes=["output-box"])
|
215 |
-
|
216 |
-
generate_button.click(generate_recipe, inputs=[recipe_input, selected_model, selected_cuisine], outputs=recipe_output)
|
217 |
-
|
218 |
-
with gr.Tab("Recipe Finder from Image"):
|
219 |
-
gr.HTML("<div class='header'>Recipe Finder from Image</div>")
|
220 |
-
with gr.Column(visible=True):
|
221 |
-
with gr.Box(elem_classes=["tab-container"]):
|
222 |
-
image_input = gr.Image(type="filepath", label="Upload an Image")
|
223 |
-
image_output = gr.Textbox(label="Recipe Details", lines=10, elem_classes=["output-box"])
|
224 |
-
image_input.change(get_recipe_details, inputs=image_input, outputs=image_output)
|
225 |
-
|
226 |
-
with gr.Tab("Recipe Image Search"):
|
227 |
-
gr.HTML("<div class='header'>Recipe Image Search</div>")
|
228 |
-
with gr.Column(visible=True):
|
229 |
-
with gr.Box(elem_classes=["tab-container"]):
|
230 |
-
recipe_name_input = gr.Textbox(label="Recipe Name", placeholder="e.g., Mixed Sprouts in Chettinad Masala Recipe", elem_classes=["input-text"])
|
231 |
-
fetch_image_button
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|