Poonawala commited on
Commit
34fe909
·
verified ·
1 Parent(s): 3f92e37

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +87 -208
app.py CHANGED
@@ -1,216 +1,95 @@
1
  import gradio as gr
 
2
  import os
3
- api_token = os.getenv("HF_TOKEN")
4
 
5
-
6
- from langchain_community.vectorstores import FAISS
7
- from langchain_community.document_loaders import PyPDFLoader
8
- from langchain.text_splitter import RecursiveCharacterTextSplitter
9
- from langchain_community.vectorstores import Chroma
10
- from langchain.chains import ConversationalRetrievalChain
11
- from langchain_community.embeddings import HuggingFaceEmbeddings
12
- from langchain_community.llms import HuggingFacePipeline
13
- from langchain.chains import ConversationChain
14
- from langchain.memory import ConversationBufferMemory
15
- from langchain_community.llms import HuggingFaceEndpoint
16
- import torch
17
-
18
- list_llm = ["meta-llama/Meta-Llama-3-8B-Instruct", "mistralai/Mistral-7B-Instruct-v0.2"]
19
- list_llm_simple = [os.path.basename(llm) for llm in list_llm]
20
-
21
- # Load and split PDF document
22
- def load_doc(list_file_path):
23
- # Processing for one document only
24
- # loader = PyPDFLoader(file_path)
25
- # pages = loader.load()
26
- loaders = [PyPDFLoader(x) for x in list_file_path]
27
- pages = []
28
- for loader in loaders:
29
- pages.extend(loader.load())
30
- text_splitter = RecursiveCharacterTextSplitter(
31
- chunk_size = 1024,
32
- chunk_overlap = 64
33
- )
34
- doc_splits = text_splitter.split_documents(pages)
35
- return doc_splits
36
-
37
- # Create vector database
38
- def create_db(splits):
39
- embeddings = HuggingFaceEmbeddings()
40
- vectordb = FAISS.from_documents(splits, embeddings)
41
- return vectordb
42
-
43
-
44
- # Initialize langchain LLM chain
45
- def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
46
- if llm_model == "meta-llama/Meta-Llama-3-8B-Instruct":
47
- llm = HuggingFaceEndpoint(
48
- repo_id=llm_model,
49
- huggingfacehub_api_token = api_token,
50
- temperature = temperature,
51
- max_new_tokens = max_tokens,
52
- top_k = top_k,
53
- )
54
- else:
55
- llm = HuggingFaceEndpoint(
56
- huggingfacehub_api_token = api_token,
57
- repo_id=llm_model,
58
- temperature = temperature,
59
- max_new_tokens = max_tokens,
60
- top_k = top_k,
61
- )
62
 
63
- memory = ConversationBufferMemory(
64
- memory_key="chat_history",
65
- output_key='answer',
66
- return_messages=True
67
- )
68
-
69
- retriever=vector_db.as_retriever()
70
- qa_chain = ConversationalRetrievalChain.from_llm(
71
- llm,
72
- retriever=retriever,
73
- chain_type="stuff",
74
- memory=memory,
75
- return_source_documents=True,
76
- verbose=False,
77
- )
78
- return qa_chain
79
-
80
- # Initialize database
81
- def initialize_database(list_file_obj, progress=gr.Progress()):
82
- # Create a list of documents (when valid)
83
- list_file_path = [x.name for x in list_file_obj if x is not None]
84
- # Load document and create splits
85
- doc_splits = load_doc(list_file_path)
86
- # Create or load vector database
87
- vector_db = create_db(doc_splits)
88
- return vector_db, "Database created!"
89
-
90
- # Initialize LLM
91
- def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
92
- # print("llm_option",llm_option)
93
- llm_name = list_llm[llm_option]
94
- print("llm_name: ",llm_name)
95
- qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db, progress)
96
- return qa_chain, "QA chain initialized. Chatbot is ready!"
97
-
98
-
99
- def format_chat_history(message, chat_history):
100
- formatted_chat_history = []
101
- for user_message, bot_message in chat_history:
102
- formatted_chat_history.append(f"User: {user_message}")
103
- formatted_chat_history.append(f"Assistant: {bot_message}")
104
- return formatted_chat_history
105
-
106
-
107
- def conversation(qa_chain, message, history):
108
- formatted_chat_history = format_chat_history(message, history)
109
- # Generate response using QA chain
110
- response = qa_chain.invoke({"question": message, "chat_history": formatted_chat_history})
111
- response_answer = response["answer"]
112
- if response_answer.find("Helpful Answer:") != -1:
113
- response_answer = response_answer.split("Helpful Answer:")[-1]
114
- response_sources = response["source_documents"]
115
- response_source1 = response_sources[0].page_content.strip()
116
- response_source2 = response_sources[1].page_content.strip()
117
- response_source3 = response_sources[2].page_content.strip()
118
- # Langchain sources are zero-based
119
- response_source1_page = response_sources[0].metadata["page"] + 1
120
- response_source2_page = response_sources[1].metadata["page"] + 1
121
- response_source3_page = response_sources[2].metadata["page"] + 1
122
- # Append user message and response to chat history
123
- new_history = history + [(message, response_answer)]
124
- return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page
125
-
126
-
127
- def upload_file(file_obj):
128
- list_file_path = []
129
- for idx, file in enumerate(file_obj):
130
- file_path = file_obj.name
131
- list_file_path.append(file_path)
132
- return list_file_path
133
-
134
-
135
- def demo():
136
- # with gr.Blocks(theme=gr.themes.Default(primary_hue="sky")) as demo:
137
- with gr.Blocks(theme=gr.themes.Default(primary_hue="red", secondary_hue="pink", neutral_hue = "sky")) as demo:
138
- vector_db = gr.State()
139
- qa_chain = gr.State()
140
- gr.HTML("<center><h1>RAG PDF chatbot</h1><center>")
141
- gr.Markdown("""<b>Query your PDF documents!</b> This AI agent is designed to perform retrieval augmented generation (RAG) on PDF documents. The app is hosted on Hugging Face Hub for the sole purpose of demonstration. \
142
- <b>Please do not upload confidential documents.</b>
143
  """)
144
- with gr.Row():
145
- with gr.Column(scale = 86):
146
- gr.Markdown("<b>Step 1 - Upload PDF documents and Initialize RAG pipeline</b>")
147
- with gr.Row():
148
- document = gr.Files(height=300, file_count="multiple", file_types=["pdf"], interactive=True, label="Upload PDF documents")
149
- with gr.Row():
150
- db_btn = gr.Button("Create vector database")
151
- with gr.Row():
152
- db_progress = gr.Textbox(value="Not initialized", show_label=False) # label="Vector database status",
153
- gr.Markdown("<style>body { font-size: 16px; }</style><b>Select Large Language Model (LLM) and input parameters</b>")
154
- with gr.Row():
155
- llm_btn = gr.Radio(list_llm_simple, label="Available LLMs", value = list_llm_simple[0], type="index") # info="Select LLM", show_label=False
156
- with gr.Row():
157
- with gr.Accordion("LLM input parameters", open=False):
158
- with gr.Row():
159
- slider_temperature = gr.Slider(minimum = 0.01, maximum = 1.0, value=0.5, step=0.1, label="Temperature", info="Controls randomness in token generation", interactive=True)
160
- with gr.Row():
161
- slider_maxtokens = gr.Slider(minimum = 128, maximum = 9192, value=4096, step=128, label="Max New Tokens", info="Maximum number of tokens to be generated",interactive=True)
162
- with gr.Row():
163
- slider_topk = gr.Slider(minimum = 1, maximum = 10, value=3, step=1, label="top-k", info="Number of tokens to select the next token from", interactive=True)
164
- with gr.Row():
165
- qachain_btn = gr.Button("Initialize Question Answering Chatbot")
166
- with gr.Row():
167
- llm_progress = gr.Textbox(value="Not initialized", show_label=False) # label="Chatbot status",
168
-
169
- with gr.Column(scale = 200):
170
- gr.Markdown("<b>Step 2 - Chat with your Document</b>")
171
- chatbot = gr.Chatbot(height=505)
172
- with gr.Accordion("Relevent context from the source document", open=False):
173
- with gr.Row():
174
- doc_source1 = gr.Textbox(label="Reference 1", lines=2, container=True, scale=20)
175
- source1_page = gr.Number(label="Page", scale=1)
176
- with gr.Row():
177
- doc_source2 = gr.Textbox(label="Reference 2", lines=2, container=True, scale=20)
178
- source2_page = gr.Number(label="Page", scale=1)
179
- with gr.Row():
180
- doc_source3 = gr.Textbox(label="Reference 3", lines=2, container=True, scale=20)
181
- source3_page = gr.Number(label="Page", scale=1)
182
- with gr.Row():
183
- msg = gr.Textbox(placeholder="Ask a question", container=True)
184
- with gr.Row():
185
- submit_btn = gr.Button("Submit")
186
- clear_btn = gr.ClearButton([msg, chatbot], value="Clear")
187
-
188
- # Preprocessing events
189
- db_btn.click(initialize_database, \
190
- inputs=[document], \
191
- outputs=[vector_db, db_progress])
192
- qachain_btn.click(initialize_LLM, \
193
- inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db], \
194
- outputs=[qa_chain, llm_progress]).then(lambda:[None,"",0,"",0,"",0], \
195
- inputs=None, \
196
- outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
197
- queue=False)
198
-
199
- # Chatbot events
200
- msg.submit(conversation, \
201
- inputs=[qa_chain, msg, chatbot], \
202
- outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
203
- queue=False)
204
- submit_btn.click(conversation, \
205
- inputs=[qa_chain, msg, chatbot], \
206
- outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
207
- queue=False)
208
- clear_btn.click(lambda:[None,"",0,"",0,"",0], \
209
- inputs=None, \
210
- outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
211
- queue=False)
212
- demo.queue().launch(debug=True)
213
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
214
 
215
  if __name__ == "__main__":
216
- demo()
 
1
  import gradio as gr
2
+ from huggingface_hub import InferenceClient
3
  import os
 
4
 
5
+ # Mock vector database creation
6
+ vector_db_created = False
7
+
8
+ def create_vector_db(uploaded_files):
9
+ global vector_db_created
10
+ if uploaded_files:
11
+ vector_db_created = True
12
+ return "Vector database created successfully. You can now chat with your documents!"
13
+ return "Please upload a file first."
14
+
15
+ # Initialize Chat Model
16
+ client = InferenceClient("meta-llama/Llama-3.2-3B-Instruct")
17
+
18
+ def respond(
19
+ message,
20
+ history: list[tuple[str, str]],
21
+ system_message,
22
+ max_tokens,
23
+ temperature,
24
+ top_p,
25
+ ):
26
+ if not vector_db_created:
27
+ yield "Error: Please create the vector database first."
28
+ return
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29
 
30
+ messages = [{"role": "system", "content": system_message}]
31
+ for val in history:
32
+ if val[0]:
33
+ messages.append({"role": "user", "content": val[0]})
34
+ if val[1]:
35
+ messages.append({"role": "assistant", "content": val[1]})
36
+ messages.append({"role": "user", "content": message})
37
+ response = ""
38
+ for message in client.chat_completion(
39
+ messages,
40
+ max_tokens=max_tokens,
41
+ stream=True,
42
+ temperature=temperature,
43
+ top_p=top_p,
44
+ ):
45
+ token = message.choices[0].delta.content
46
+ response += token
47
+ yield response
48
+
49
+ # Custom CSS
50
+ css = """
51
+ #drop-area { border: 2px dashed #42B3CE; border-radius: 10px; padding: 20px; }
52
+ .error-message { color: red; font-weight: bold; }
53
+ .vector-btn { background-color: #42B3CE !important; color: white; }
54
+ .chat-submit { background-color: #06688E !important; color: white; }
55
+ .chat-clear { background-color: #e0e0e0 !important; color: black; }
56
+ """
57
+
58
+ def main():
59
+ with gr.Blocks(css=css) as demo:
60
+ gr.Markdown("""# **RAG PDF Chatbot**
61
+ Query your PDF documents! Upload, initialize, and chat using an AI assistant.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62
  """)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63
 
64
+ # Step 1: File upload and database initialization
65
+ with gr.Row():
66
+ with gr.Column():
67
+ pdf_upload = gr.File(label="Upload PDF documents", file_types=[".pdf"], type="file")
68
+ create_db_btn = gr.Button("Create vector database", elem_classes=["vector-btn"])
69
+ db_status = gr.Textbox("Not initialized", interactive=False)
70
+
71
+ with gr.Column():
72
+ gr.Markdown("**Step 2 - Chat with your Document**")
73
+ chatbot = gr.ChatInterface(
74
+ respond,
75
+ additional_inputs=[
76
+ gr.Textbox(
77
+ value="You are a helpful assistant...",
78
+ label="System Message",
79
+ visible=False
80
+ ),
81
+ gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens", visible=False),
82
+ gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature", visible=False),
83
+ gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p", visible=False),
84
+ ],
85
+ submit_btn="Submit",
86
+ clear_btn="Clear",
87
+ )
88
+
89
+ # Button events
90
+ create_db_btn.click(create_vector_db, inputs=[pdf_upload], outputs=[db_status])
91
+
92
+ demo.launch(share=True)
93
 
94
  if __name__ == "__main__":
95
+ main()