Update app.py
Browse files
app.py
CHANGED
@@ -1,2 +1,161 @@
|
|
1 |
-
import
|
2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import PyPDF2
|
3 |
+
from huggingface_hub import InferenceClient
|
4 |
+
|
5 |
+
# Initialize the Inference Client
|
6 |
+
client = InferenceClient("meta-llama/Llama-3.2-3B-Instruct")
|
7 |
+
|
8 |
+
|
9 |
+
def respond(
|
10 |
+
message,
|
11 |
+
history: list[tuple[str, str]],
|
12 |
+
system_message,
|
13 |
+
max_tokens,
|
14 |
+
temperature,
|
15 |
+
top_p,
|
16 |
+
uploaded_pdf=None
|
17 |
+
):
|
18 |
+
messages = [{"role": "system", "content": system_message}]
|
19 |
+
|
20 |
+
# Add previous conversation history to the messages
|
21 |
+
for val in history:
|
22 |
+
if val[0]:
|
23 |
+
messages.append({"role": "user", "content": val[0]})
|
24 |
+
if val[1]:
|
25 |
+
messages.append({"role": "assistant", "content": val[1]})
|
26 |
+
|
27 |
+
# If a new message is entered, add it to the conversation history
|
28 |
+
messages.append({"role": "user", "content": message})
|
29 |
+
|
30 |
+
# If a PDF is uploaded, process its content
|
31 |
+
if uploaded_pdf is not None:
|
32 |
+
file_content = extract_pdf_text(uploaded_pdf)
|
33 |
+
if file_content:
|
34 |
+
messages.append({"role": "user", "content": f"Document Content: {file_content}"})
|
35 |
+
|
36 |
+
# Get response from the model
|
37 |
+
response = ""
|
38 |
+
for message in client.chat_completion(
|
39 |
+
messages,
|
40 |
+
max_tokens=max_tokens,
|
41 |
+
stream=True,
|
42 |
+
temperature=temperature,
|
43 |
+
top_p=top_p,
|
44 |
+
):
|
45 |
+
token = message.choices[0].delta.content
|
46 |
+
response += token
|
47 |
+
yield response
|
48 |
+
|
49 |
+
|
50 |
+
def extract_pdf_text(file):
|
51 |
+
"""Extract text from a PDF file."""
|
52 |
+
try:
|
53 |
+
reader = PyPDF2.PdfReader(file)
|
54 |
+
text = ""
|
55 |
+
for page in reader.pages:
|
56 |
+
text += page.extract_text()
|
57 |
+
return text
|
58 |
+
except Exception as e:
|
59 |
+
return f"Error extracting text from PDF: {str(e)}"
|
60 |
+
|
61 |
+
|
62 |
+
# Streamlit UI
|
63 |
+
st.set_page_config(page_title="Health Assistant", layout="wide")
|
64 |
+
|
65 |
+
# Custom CSS for Streamlit app
|
66 |
+
st.markdown(
|
67 |
+
"""
|
68 |
+
<style>
|
69 |
+
body {
|
70 |
+
background-color: #1e2a38; /* Dark blue background */
|
71 |
+
color: #ffffff; /* White text for readability */
|
72 |
+
font-family: 'Arial', sans-serif; /* Clean and modern font */
|
73 |
+
}
|
74 |
+
.stButton button {
|
75 |
+
background-color: #42B3CE !important; /* Light blue button */
|
76 |
+
color: #2e3b4e !important; /* Dark text for contrast */
|
77 |
+
border: none !important;
|
78 |
+
padding: 10px 20px !important;
|
79 |
+
border-radius: 8px !important;
|
80 |
+
font-size: 16px;
|
81 |
+
font-weight: bold;
|
82 |
+
transition: background-color 0.3s ease, transform 0.2s ease;
|
83 |
+
}
|
84 |
+
.stButton button:hover {
|
85 |
+
background-color: #3189A2 !important; /* Darker blue on hover */
|
86 |
+
transform: scale(1.05);
|
87 |
+
}
|
88 |
+
.stTextInput input {
|
89 |
+
background-color: #2f3b4d;
|
90 |
+
color: white;
|
91 |
+
border: 2px solid #42B3CE;
|
92 |
+
padding: 12px;
|
93 |
+
border-radius: 8px;
|
94 |
+
font-size: 16px;
|
95 |
+
transition: border 0.3s ease;
|
96 |
+
}
|
97 |
+
.stTextInput input:focus {
|
98 |
+
border-color: #3189A2;
|
99 |
+
}
|
100 |
+
</style>
|
101 |
+
""",
|
102 |
+
unsafe_allow_html=True,
|
103 |
+
)
|
104 |
+
|
105 |
+
# Title and description
|
106 |
+
st.title("Health Assistant Chat")
|
107 |
+
st.subheader("Chat with your health assistant and upload a document for analysis")
|
108 |
+
|
109 |
+
# System message for health-related responses
|
110 |
+
system_message = (
|
111 |
+
"You are a virtual health assistant designed to provide accurate and reliable information "
|
112 |
+
"related to health, wellness, and medical topics. Your primary goal is to assist users with "
|
113 |
+
"their health-related queries, offer general guidance, and suggest when to consult a licensed "
|
114 |
+
"medical professional. If a user asks a question that is unrelated to health, wellness, or medical "
|
115 |
+
"topics, respond politely but firmly with: 'I'm sorry, I can't help with that because I am a virtual "
|
116 |
+
"health assistant designed to assist with health-related needs. Please let me know if you have any health-related questions.'"
|
117 |
+
)
|
118 |
+
|
119 |
+
# Upload a PDF file
|
120 |
+
uploaded_pdf = st.file_uploader("Upload a PDF file (Optional)", type="pdf")
|
121 |
+
|
122 |
+
# User input message
|
123 |
+
message = st.text_input("Type your health-related question:")
|
124 |
+
|
125 |
+
# History for conversation tracking
|
126 |
+
if 'history' not in st.session_state:
|
127 |
+
st.session_state['history'] = []
|
128 |
+
|
129 |
+
# Collect and display previous conversation history
|
130 |
+
history = st.session_state['history']
|
131 |
+
for user_message, assistant_message in history:
|
132 |
+
st.markdown(f"**You:** {user_message}")
|
133 |
+
st.markdown(f"**Assistant:** {assistant_message}")
|
134 |
+
|
135 |
+
# Max tokens, temperature, and top-p sliders
|
136 |
+
max_tokens = st.slider("Max new tokens", min_value=1, max_value=2048, value=512)
|
137 |
+
temperature = st.slider("Temperature", min_value=0.1, max_value=4.0, value=0.7, step=0.1)
|
138 |
+
top_p = st.slider("Top-p (nucleus sampling)", min_value=0.1, max_value=1.0, value=0.95, step=0.05)
|
139 |
+
|
140 |
+
# Button to generate response
|
141 |
+
if st.button("Generate Response"):
|
142 |
+
if message:
|
143 |
+
# Append the user's question to the conversation history
|
144 |
+
st.session_state.history.append((message, ""))
|
145 |
+
# Generate the response based on the user's input and any uploaded document
|
146 |
+
response = respond(
|
147 |
+
message,
|
148 |
+
st.session_state.history,
|
149 |
+
system_message,
|
150 |
+
max_tokens,
|
151 |
+
temperature,
|
152 |
+
top_p,
|
153 |
+
uploaded_pdf
|
154 |
+
)
|
155 |
+
# Display the response
|
156 |
+
for resp in response:
|
157 |
+
st.markdown(f"**Assistant:** {resp}")
|
158 |
+
# Update the conversation history with the assistant's response
|
159 |
+
st.session_state.history[-1] = (message, resp)
|
160 |
+
else:
|
161 |
+
st.error("Please enter a question to proceed.")
|