Poonawala commited on
Commit
fb57f80
·
verified ·
1 Parent(s): 56dc01e

Upload 5 files

Browse files
Files changed (6) hide show
  1. .gitattributes +1 -0
  2. Food_Recipe.csv +3 -0
  3. README.md +14 -0
  4. app.py +210 -0
  5. gitattributes +36 -0
  6. requirements.txt +8 -0
.gitattributes ADDED
@@ -0,0 +1 @@
 
 
1
+ Food_Recipe.csv filter=lfs diff=lfs merge=lfs -text
Food_Recipe.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:03a20c91ce5b5e3faf0ebecd233bb38e586099e29a7091e08a2f4ade0d7b7009
3
+ size 16251035
README.md ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ title: Personal Recipe Generator
3
+ emoji: 🐢
4
+ colorFrom: purple
5
+ colorTo: pink
6
+ sdk: gradio
7
+ sdk_version: 5.9.1
8
+ app_file: app.py
9
+ pinned: false
10
+ license: apache-2.0
11
+ short_description: a bot that generates recipes for you
12
+ ---
13
+
14
+ Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
app.py ADDED
@@ -0,0 +1,210 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pandas as pd
3
+ import gradio as gr
4
+ from tensorflow.keras.applications import MobileNetV2
5
+ from tensorflow.keras.preprocessing.image import load_img, img_to_array
6
+ from tensorflow.keras.applications.mobilenet_v2 import preprocess_input, decode_predictions
7
+ from fuzzywuzzy import fuzz
8
+ from transformers import pipeline
9
+ import requests
10
+ from PIL import Image
11
+ from io import BytesIO
12
+
13
+ # Load models using pipeline for recipe generation
14
+ models = {
15
+ "Flan-T5 Small": pipeline("text2text-generation", model="BhavaishKumar112/flan-t5-small"),
16
+ "GPT-Neo 125M": pipeline("text-generation", model="BhavaishKumar112/gpt-neo-125M"),
17
+ "Final GPT-2 Trained": pipeline("text-generation", model="BhavaishKumar112/finalgpt2trained")
18
+ }
19
+
20
+ # Supported cuisines for recipe generation
21
+ cuisines = ["Thai", "Indian", "Chinese", "Italian"]
22
+
23
+ # Load the dataset for image classification and recipe search
24
+ dataset_path = "Food_Recipe.csv" # Update with your dataset path
25
+ data_df = pd.read_csv(dataset_path)
26
+
27
+ # Load MobileNetV2 pre-trained model for image classification
28
+ mobilenet_model = MobileNetV2(weights="imagenet")
29
+
30
+ # Function to preprocess images
31
+ def preprocess_image(image_path, target_size=(224, 224)):
32
+ image = load_img(image_path, target_size=target_size)
33
+ image_array = img_to_array(image)
34
+ image_array = np.expand_dims(image_array, axis=0)
35
+ return preprocess_input(image_array)
36
+
37
+ # Function to classify an image
38
+ def classify_image(image):
39
+ try:
40
+ image_array = preprocess_image(image)
41
+ predictions = mobilenet_model.predict(image_array)
42
+ decoded_predictions = decode_predictions(predictions, top=3)[0]
43
+ return decoded_predictions
44
+ except Exception as e:
45
+ print(f"Error during classification: {e}")
46
+ return []
47
+
48
+ # Map classification to recipe using fuzzy matching
49
+ def map_to_recipe(classification_results):
50
+ for result in classification_results:
51
+ best_match = None
52
+ best_score = 0
53
+ for index, row in data_df.iterrows():
54
+ score = fuzz.partial_ratio(result[1].lower(), row["name"].lower())
55
+ if score > best_score:
56
+ best_score = score
57
+ best_match = row
58
+ if best_score >= 70:
59
+ return best_match
60
+ return None
61
+
62
+ # Generate recipe summary
63
+ def generate_summary(recipe):
64
+ ingredients = recipe.get("ingredients_name", "No ingredients provided")
65
+ time_to_cook = recipe.get("time_to_cook", "Time to cook not provided")
66
+ instructions = recipe.get("instructions", "No instructions provided")
67
+ return f"Ingredients: {ingredients}\n\nTime to Cook: {time_to_cook}\n\nInstructions: {instructions}"
68
+
69
+ # Function to handle image input and return recipe details
70
+ def get_recipe_details(image):
71
+ classification_results = classify_image(image)
72
+ if not classification_results:
73
+ return "Error: No classification results found for the image."
74
+ recipe = map_to_recipe(classification_results)
75
+ if recipe is not None:
76
+ return generate_summary(recipe)
77
+ else:
78
+ return "No matching recipe found for this image."
79
+
80
+ # Function for recipe generation (as before)
81
+ def generate_recipe(input_text, selected_model, selected_cuisine):
82
+ prompt = (
83
+ f"Generate a detailed and structured {selected_cuisine} recipe for {input_text}. "
84
+ f"Include all the necessary details such as ingredients under an 'Ingredients' heading "
85
+ f"and steps under a 'Recipe' heading. Ensure the response is concise and well-organized."
86
+ )
87
+ model = models[selected_model]
88
+ output = model(prompt, max_length=500, num_return_sequences=1)[0]['generated_text']
89
+ return output
90
+
91
+ # Function to fetch and display the image for a recipe name
92
+ def fetch_recipe_image(recipe_name):
93
+ matching_row = data_df[data_df['name'].str.contains(recipe_name, case=False, na=False)]
94
+ if not matching_row.empty:
95
+ image_url = matching_row.iloc[0]['image_url']
96
+ try:
97
+ response = requests.get(image_url)
98
+ img = Image.open(BytesIO(response.content))
99
+ return img
100
+ except Exception as e:
101
+ return f"Error fetching image: {e}"
102
+ else:
103
+ return "No matching recipe found. Please check the recipe name."
104
+
105
+ # Gradio interface with updated vibrant colors and higher contrast for better readability
106
+ def main():
107
+ with gr.Blocks(css="""
108
+ body {
109
+ font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
110
+ background-color: #1c1c1c; /* Dark background for high contrast */
111
+ margin: 0;
112
+ padding: 0;
113
+ color: #e0e0e0; /* Light text for contrast */
114
+ }
115
+ .chat-container {
116
+ max-width: 800px;
117
+ margin: 30px auto;
118
+ padding: 20px;
119
+ background: #333333; /* Dark gray background */
120
+ border-radius: 16px;
121
+ box-shadow: 0 8px 16px rgba(0, 0, 0, 0.1);
122
+ }
123
+ .chat-header {
124
+ text-align: center;
125
+ font-size: 32px;
126
+ font-weight: bold;
127
+ color: #ff9800; /* Orange for visibility */
128
+ margin-bottom: 20px;
129
+ }
130
+ .chat-input {
131
+ width: 100%;
132
+ padding: 14px;
133
+ font-size: 16px;
134
+ border-radius: 12px;
135
+ border: 1px solid #ff9800; /* Orange border */
136
+ margin-bottom: 15px;
137
+ background-color: #424242; /* Dark input field */
138
+ color: #e0e0e0; /* Light text */
139
+ }
140
+ .chat-button {
141
+ background-color: #ff9800;
142
+ color: white;
143
+ border: none;
144
+ padding: 12px 24px;
145
+ font-size: 16px;
146
+ border-radius: 12px;
147
+ cursor: pointer;
148
+ }
149
+ .chat-button:hover {
150
+ background-color: #e65100; /* Darker orange for hover */
151
+ }
152
+ .chat-output {
153
+ padding: 15px;
154
+ background: #424242; /* Dark gray background for output */
155
+ border-radius: 10px;
156
+ border: 1px solid #616161; /* Light gray border */
157
+ color: #e0e0e0; /* Light text */
158
+ white-space: pre-wrap;
159
+ min-height: 120px;
160
+ }
161
+ .tab-title {
162
+ font-weight: bold;
163
+ font-size: 22px;
164
+ color: #ff9800; /* Orange text for tab title */
165
+ }
166
+ .tab-button {
167
+ background-color: #616161;
168
+ color: #ff9800;
169
+ border: 1px solid #ff9800;
170
+ padding: 12px;
171
+ border-radius: 12px;
172
+ }
173
+ .tab-button:hover {
174
+ background-color: #ff5722; /* Bright orange for tab button hover */
175
+ }
176
+ .icon {
177
+ font-size: 20px;
178
+ margin-right: 10px;
179
+ }
180
+ .gradio-container {
181
+ margin-top: 20px;
182
+ }
183
+ """) as app:
184
+
185
+ with gr.Tab("Recipe Generator"):
186
+ gr.HTML("<div class='chat-container'><div class='chat-header'><i class='icon'>🍽</i>Recipe Generator</div><p class='tab-title'>Enter a recipe name or ingredients, select a cuisine and model, and get structured recipe instructions!</p></div>")
187
+ recipe_input = gr.Textbox(label="Enter Recipe Name or Ingredients", placeholder="e.g., Chicken curry or chicken, garlic, onions", elem_classes=["chat-input"])
188
+ selected_cuisine = gr.Radio(choices=cuisines, label="Cuisine", value="Indian")
189
+ selected_model = gr.Radio(choices=list(models.keys()), label="Model", value="Flan-T5 Small")
190
+ recipe_output = gr.Textbox(label="Recipe", lines=15, elem_classes=["chat-output"])
191
+ generate_button = gr.Button("Generate Recipe", elem_classes=["chat-button"])
192
+ generate_button.click(generate_recipe, inputs=[recipe_input, selected_model, selected_cuisine], outputs=recipe_output)
193
+
194
+ with gr.Tab("Recipe Finder from Image"):
195
+ gr.HTML("<div class='chat-container'><div class='chat-header'><i class='icon'>📸</i>Recipe Finder from Image</div><p class='tab-title'>Upload an image of a dish to find a matching recipe.</p></div>")
196
+ image_input = gr.Image(type="filepath", label="Upload an Image")
197
+ image_output = gr.Textbox(label="Recipe Details", lines=10, elem_classes=["chat-output"])
198
+ image_input.change(get_recipe_details, inputs=image_input, outputs=image_output)
199
+
200
+ with gr.Tab("Recipe Image Search"):
201
+ gr.HTML("<div class='chat-container'><div class='chat-header'><i class='icon'>📷</i>Recipe Image Search</div><p class='tab-title'>Enter the name of a recipe to view its image.</p></div>")
202
+ recipe_name_input = gr.Textbox(label="Recipe Name", placeholder="e.g., Mixed Sprouts in Chettinad Masala Recipe", elem_classes=["chat-input"])
203
+ recipe_image_output = gr.Image(label="Recipe Image")
204
+ fetch_image_button = gr.Button("Generate Image", elem_classes=["chat-button"])
205
+ fetch_image_button.click(fetch_recipe_image, inputs=recipe_name_input, outputs=recipe_image_output)
206
+
207
+ app.launch()
208
+
209
+ if __name__ == "__main__":
210
+ main()
gitattributes ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tar filter=lfs diff=lfs merge=lfs -text
29
+ *.tflite filter=lfs diff=lfs merge=lfs -text
30
+ *.tgz filter=lfs diff=lfs merge=lfs -text
31
+ *.wasm filter=lfs diff=lfs merge=lfs -text
32
+ *.xz filter=lfs diff=lfs merge=lfs -text
33
+ *.zip filter=lfs diff=lfs merge=lfs -text
34
+ *.zst filter=lfs diff=lfs merge=lfs -text
35
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ Food_Recipe.csv filter=lfs diff=lfs merge=lfs -text
requirements.txt ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ transformers
2
+ tensorflow
3
+ datasets
4
+ fuzzywuzzy
5
+ pandas
6
+ gradio
7
+ torch
8
+ tf-keras