import torch import nemo.collections.asr as nemo_asr import gc import numpy as np import torchaudio import gradio as gr pretrained_model_path="./stt_fa_fastconformer_hybrid_large_finetuned.nemo" # Clear up memory torch.cuda.empty_cache() gc.collect() model = nemo_asr.models.EncDecHybridRNNTCTCModel.restore_from(pretrained_model_path) device = 'cuda' if torch.cuda.is_available() else 'cpu' # device = 'cpu' # You can transcribe even longer samples on the CPU, though it will take much longer ! model = model.to(device) model.freeze() def transcribe(stream, new_chunk): if new_chunk is None: return None, "" # 'audio' is a tuple: (sample_rate, data) sample_rate, data = new_chunk # Ensure the model is on the correct device device = 'cuda' if torch.cuda.is_available() else 'cpu' # Convert audio data to the expected format if isinstance(data, np.ndarray): audio_tensor = torch.tensor(data, dtype=torch.float32) else: raise ValueError("Audio data must be a numpy array") # Resample if sample rate is not 16000 target_sample_rate = 16000 if sample_rate != target_sample_rate: resampler = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=target_sample_rate) audio_tensor = resampler(audio_tensor) if stream is not None: stream['audio'] = torch.cat([stream['audio'], audio_tensor], dim=-1) else: stream = {"text": ""} stream['audio'] = audio_tensor max_length = 5 * target_sample_rate # 5 seconds new_text = "" # Process all chunks that fit max_length while stream['audio'].shape[-1] > max_length: # Extract first max_length samples audio_chunk = stream['audio'][..., :max_length] # Transcribe with torch.no_grad(): transcript = model.transcribe(audio_chunk) # Add batch dimension if needed # Update text (adjust based on model's output format) new_text += " " + transcript[0][0].strip() # Example adjustment # Remove processed audio from buffer stream['audio'] = stream['audio'][..., max_length:] stream['text'] += new_text return stream, stream['text'].strip() interface = gr.Interface( fn=transcribe, inputs=['state', gr.Audio(sources="microphone", streaming=True, type="numpy")], outputs=["state", "text"], live=True, ) interface.launch()