Spaces:
Sleeping
Sleeping
Pouria Aghaomidi
commited on
Commit
·
163b706
1
Parent(s):
0c5ef1f
- app.py +51 -2
- requirements.txt +12 -0
app.py
CHANGED
@@ -1,11 +1,60 @@
|
|
1 |
import os
|
2 |
-
import
|
3 |
import gradio as gr
|
4 |
-
|
|
|
|
|
5 |
|
6 |
os.environ["GRADIO_ANALYTICS_ENABLED"] = "False"
|
7 |
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
# Function to load CSV and initialize PersianRAG
|
10 |
def init_rag(knowledge_file, embedding_model, llm_model, device, retrieved_docs):
|
11 |
knowledge = pd.read_csv(knowledge_file)
|
|
|
1 |
import os
|
2 |
+
import torch
|
3 |
import gradio as gr
|
4 |
+
import pandas as pd
|
5 |
+
from sentence_transformers import SentenceTransformer, util
|
6 |
+
from transformers import GenerationConfig, AutoModelForCausalLM, AutoTokenizer
|
7 |
|
8 |
os.environ["GRADIO_ANALYTICS_ENABLED"] = "False"
|
9 |
|
10 |
|
11 |
+
class PersianRAG:
|
12 |
+
def __init__(self, knowledge, embedding_model='LABSE', llm_model="MehdiHosseiniMoghadam/AVA-Mistral-7B-V2",
|
13 |
+
device='cuda', retrieved_docs=3):
|
14 |
+
self.device = device
|
15 |
+
self.retrieved_docs = retrieved_docs
|
16 |
+
self.answer_df = (knowledge['Answer'])
|
17 |
+
|
18 |
+
self.embedder = SentenceTransformer(embedding_model)
|
19 |
+
self.question_embeddings = self.embedder.encode((knowledge['Question']), show_progress_bar=True,
|
20 |
+
convert_to_tensor=True)
|
21 |
+
|
22 |
+
self.model = AutoModelForCausalLM.from_pretrained(llm_model, torch_dtype=torch.float16, device_map="auto")
|
23 |
+
self.tokenizer = AutoTokenizer.from_pretrained(llm_model)
|
24 |
+
self.generation_config = GenerationConfig(
|
25 |
+
do_sample=True,
|
26 |
+
top_k=1,
|
27 |
+
temperature=0.99,
|
28 |
+
max_new_tokens=900,
|
29 |
+
pad_token_id=self.tokenizer.eos_token_id
|
30 |
+
)
|
31 |
+
|
32 |
+
def rag(self, query):
|
33 |
+
ans = {}
|
34 |
+
question_embedding = self.embedder.encode(query, convert_to_tensor=True)
|
35 |
+
hits = util.semantic_search(question_embedding, self.question_embeddings)
|
36 |
+
hits = hits[0]
|
37 |
+
|
38 |
+
for hit in hits[0:self.retrieved_docs]:
|
39 |
+
ans[hit['corpus_id']] = self.answer_df[hit['corpus_id']]
|
40 |
+
ans = pd.DataFrame(list(ans.items()), columns=['id', 'res'])
|
41 |
+
|
42 |
+
prompt = f'''
|
43 |
+
با توجه به شرایط زیر به این سوال پاسخ دهید:
|
44 |
+
{query},
|
45 |
+
|
46 |
+
متن نوشته:
|
47 |
+
{ans['res'][0]} - {ans['res'][1]} - {ans['res'][2]}
|
48 |
+
'''
|
49 |
+
|
50 |
+
prompt = f"### Human:{prompt}\n### Assistant:"
|
51 |
+
|
52 |
+
inputs = self.tokenizer(prompt, return_tensors="pt").to(self.device)
|
53 |
+
outputs = self.model.generate(**inputs, generation_config=self.generation_config)
|
54 |
+
|
55 |
+
return self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
56 |
+
|
57 |
+
|
58 |
# Function to load CSV and initialize PersianRAG
|
59 |
def init_rag(knowledge_file, embedding_model, llm_model, device, retrieved_docs):
|
60 |
knowledge = pd.read_csv(knowledge_file)
|
requirements.txt
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
sentence-transformers
|
2 |
+
metapub
|
3 |
+
openpyxl
|
4 |
+
accelerate
|
5 |
+
transformers
|
6 |
+
accelerate
|
7 |
+
bitsandbytes
|
8 |
+
trl
|
9 |
+
py7zr
|
10 |
+
optimum
|
11 |
+
git+https://github.com/huggingface/peft
|
12 |
+
# pip install auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118
|