import os import torch import gradio as gr import pandas as pd from sentence_transformers import SentenceTransformer, util from transformers import GenerationConfig, AutoModelForCausalLM, AutoTokenizer os.environ["GRADIO_ANALYTICS_ENABLED"] = "False" class PersianRAG: def __init__(self, knowledge, embedding_model='LABSE', llm_model="MehdiHosseiniMoghadam/AVA-Mistral-7B-V2", device='cuda', retrieved_docs=3): self.device = device self.retrieved_docs = retrieved_docs self.answer_df = (knowledge['Answer']) self.embedder = SentenceTransformer(embedding_model) self.question_embeddings = self.embedder.encode((knowledge['Question']), show_progress_bar=True, convert_to_tensor=True) self.model = AutoModelForCausalLM.from_pretrained(llm_model, torch_dtype=torch.float16, device_map="auto") self.tokenizer = AutoTokenizer.from_pretrained(llm_model) self.generation_config = GenerationConfig( do_sample=True, top_k=1, temperature=0.99, max_new_tokens=900, pad_token_id=self.tokenizer.eos_token_id ) def rag(self, query): ans = {} question_embedding = self.embedder.encode(query, convert_to_tensor=True) hits = util.semantic_search(question_embedding, self.question_embeddings) hits = hits[0] for hit in hits[0:self.retrieved_docs]: ans[hit['corpus_id']] = self.answer_df[hit['corpus_id']] ans = pd.DataFrame(list(ans.items()), columns=['id', 'res']) prompt = f''' با توجه به شرایط زیر به این سوال پاسخ دهید: {query}, متن نوشته: {ans['res'][0]} - {ans['res'][1]} - {ans['res'][2]} ''' prompt = f"### Human:{prompt}\n### Assistant:" inputs = self.tokenizer(prompt, return_tensors="pt").to(self.device) outputs = self.model.generate(**inputs, generation_config=self.generation_config) return self.tokenizer.decode(outputs[0], skip_special_tokens=True) # Function to load CSV and initialize PersianRAG def init_rag(knowledge_file, embedding_model, llm_model, device, retrieved_docs): knowledge = pd.read_csv(knowledge_file) rag_system = PersianRAG(knowledge, embedding_model=embedding_model, llm_model=llm_model, device=device, retrieved_docs=retrieved_docs) return rag_system # Function to handle querying def query_rag(rag_system, query): return rag_system.rag(query) # Gradio interface to upload CSV and configure RAG system def rag_interface(knowledge_file, query, embedding_model, llm_model, device, retrieved_docs): rag_system = init_rag(knowledge_file, embedding_model, llm_model, device, retrieved_docs) return query_rag(rag_system, query) # Create Gradio interface interface = gr.Interface( fn=rag_interface, inputs=[ gr.File(label="Upload Knowledge Base CSV"), gr.Textbox(label="Enter your query"), gr.Dropdown(choices=["LABSE", "paraphrase-multilingual-mpnet-base-v2"], value="LABSE", label="Embedding Model"), gr.Textbox(value="MehdiHosseiniMoghadam/AVA-Mistral-7B-V2", label="LLM Model Name"), gr.Dropdown(choices=["cuda", "cpu"], value="cuda", label="Device"), gr.Slider(minimum=1, maximum=5, step=1, value=3, label="Number of Retrieved Documents")], outputs="text", title="Persian RAG System", description="Upload a CSV file as the knowledge base, ask a question, and get an answer.") # Launch the Gradio interface interface.launch(debug=True)