Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#Libraries
|
2 |
+
|
3 |
+
import streamlit as st
|
4 |
+
from transformers import BlipForConditionalGeneration, AutoTokenizer
|
5 |
+
import torch
|
6 |
+
from PIL import Image
|
7 |
+
import torchvision.transforms as transforms
|
8 |
+
|
9 |
+
# Load the fine-tuned model and tokenizer
|
10 |
+
model = BlipForConditionalGeneration.from_pretrained("PrabalPaul007/Prabal_AI_ML_stable")
|
11 |
+
tokenizer = AutoTokenizer.from_pretrained("PrabalPaul007/Prabal_AI_ML_stable")
|
12 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
13 |
+
|
14 |
+
# Function to generate caption for the uploaded image
|
15 |
+
def generate_caption(image):
|
16 |
+
# Preprocess the image
|
17 |
+
image = Image.open(image).convert("RGB")
|
18 |
+
image = image.resize((224, 224)) # Resize the image to match model input size
|
19 |
+
|
20 |
+
# Convert the image to a tensor
|
21 |
+
transform = transforms.Compose([
|
22 |
+
transforms.ToTensor(),
|
23 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
24 |
+
])
|
25 |
+
image_tensor = transform(image).unsqueeze(0).to(device)
|
26 |
+
|
27 |
+
# Generate caption
|
28 |
+
output = model.generate(pixel_values=image_tensor)
|
29 |
+
caption = tokenizer.decode(output[0], skip_special_tokens=True)
|
30 |
+
return caption
|
31 |
+
|
32 |
+
|
33 |
+
|
34 |
+
# Streamlit app
|
35 |
+
st.title("Cartoon Caption Generator")
|
36 |
+
|
37 |
+
uploaded_image = st.file_uploader("Upload an image", type=["jpg", "jpeg"])
|
38 |
+
|
39 |
+
if uploaded_image is not None:
|
40 |
+
st.image(uploaded_image, caption='Uploaded Image.', use_column_width=True)
|
41 |
+
st.write("")
|
42 |
+
st.write("Generating caption...")
|
43 |
+
|
44 |
+
# Generate caption for the uploaded image with the fixed prompt
|
45 |
+
caption = generate_caption(uploaded_image)
|
46 |
+
st.write("Caption:", caption)
|