Pradheep1647's picture
made some changes for faster processing
3e6c751
raw
history blame
6.45 kB
import os
import subprocess
import gradio as gr
import whisper
import yt_dlp
import torch
import numpy as np
from moviepy.editor import VideoFileClip
from transformers import AutoModelForAudioClassification, AutoFeatureExtractor
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from transformers import BlipProcessor, BlipForConditionalGeneration
import cv2
emotion_labels = ['anger', 'joy', 'optimism', 'sad']
def extract_audio_from_video(video_path):
video_clip = VideoFileClip(video_path)
audio_output = os.path.join('./', 'audio.mp3')
audio_clip = video_clip.audio
audio_clip.write_audiofile(audio_output)
return audio_output
def convert_mp3_to_wav(mp3_path):
from pydub import AudioSegment
audio = AudioSegment.from_mp3(mp3_path)
wav_output = os.path.join('./', 'audio.wav')
audio.export(wav_output, format="wav")
return wav_output
def process_text(text):
model_name = "cardiffnlp/twitter-roberta-base-emotion"
emotion_labels = ['anger', 'joy', 'optimism', 'sad']
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)
inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=512)
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
emotion_probs = torch.softmax(logits, dim=-1).squeeze()
predicted_emotion = emotion_labels[torch.argmax(emotion_probs)]
emotion_dict = {emotion_labels[i]: emotion_probs[i].item() for i in range(len(emotion_labels))}
return emotion_dict, predicted_emotion
def preprocess_frame(frame):
frame = cv2.resize(frame, (112, 112))
pixel_values = caption_processor(images=frame, return_tensors="pt").pixel_values
return pixel_values
def generate_caption(pixel_values):
caption_ids = caption_model.generate(pixel_values)
caption = caption_processor.batch_decode(caption_ids, skip_special_tokens=True)[0]
return caption
def predict_emotions(caption):
inputs = emotion_tokenizer(caption, return_tensors='pt', truncation=True, padding=True)
outputs = emotion_model(**inputs)
emotion_probs = torch.softmax(outputs.logits, dim=1)
predicted_emotions = {label: prob.item() for label, prob in zip(emotion_labels, emotion_probs[0])}
return predicted_emotions
# Models for image captioning and emotion analysis
caption_model_name = "Salesforce/blip-image-captioning-base"
caption_processor = BlipProcessor.from_pretrained(caption_model_name)
caption_model = BlipForConditionalGeneration.from_pretrained(caption_model_name)
emotion_model_name = "j-hartmann/emotion-english-distilroberta-base"
emotion_tokenizer = AutoTokenizer.from_pretrained(emotion_model_name)
emotion_model = AutoModelForSequenceClassification.from_pretrained(emotion_model_name)
def analyze_video(video=None, video_url=None):
if video is not None:
# If a video is uploaded, process the uploaded file
video_path = video
elif video_url:
# For streaming YouTube video, just embed the link (assuming it's embedded using Gradio)
video_path = None
# If the video is uploaded, extract audio
if video_path:
audio_path = extract_audio_from_video(video_path)
audio_wav_path = convert_mp3_to_wav(audio_path)
model_whisper = whisper.load_model("base")
result_whisper = model_whisper.transcribe(audio_wav_path)
transcript = result_whisper['text']
emotion_dict_text, predicted_emotion_text = process_text(transcript)
# Frame-wise emotion detection from the video
n_frame_interval = 120
emotion_vectors_video = []
video_capture = cv2.VideoCapture(video_path)
total_frames_video = int(video_capture.get(cv2.CAP_PROP_FRAME_COUNT))
frame_count_video = 0
while video_capture.isOpened():
ret_video, frame_video = video_capture.read()
if not ret_video or frame_count_video > total_frames_video:
break
if frame_count_video % n_frame_interval == 0:
pixel_values_video = preprocess_frame(frame_video)
caption_video = generate_caption(pixel_values_video)
predicted_emotions_video = predict_emotions(caption_video)
emotion_vectors_video.append(np.array(list(predicted_emotions_video.values())))
frame_count_video += 1
video_capture.release()
average_emotion_vector_video = np.mean(emotion_vectors_video, axis=0)
combined_emotion_vector_final = np.concatenate((np.array(list(emotion_dict_text.values())), average_emotion_vector_video))
final_most_predicted_index = np.argmax(combined_emotion_vector_final)
final_most_predicted_emotion = list(emotion_dict_text.keys())[final_most_predicted_index]
return transcript, predicted_emotion_text, final_most_predicted_emotion
else:
# For streaming, return an empty analysis or handle the embedding in the Gradio UI
return None, "Streaming video detected (no processing).", "N/A"
# Gradio Interface
with gr.Blocks() as iface:
gr.Markdown("# πŸŽ₯ Multimodal Emotion Recognition\nUpload a video or input a YouTube video URL to analyze emotions from audio and video frames.")
with gr.Tabs():
with gr.TabItem("Upload Video"):
video_file = gr.File(label="Upload Video File", file_types=["video"])
submit_button_file = gr.Button("Analyze Uploaded Video")
with gr.TabItem("YouTube URL"):
video_url = gr.Textbox(label="YouTube Video URL", placeholder="Enter YouTube video URL")
submit_button_url = gr.Button("Analyze YouTube Video")
with gr.Row():
transcript_output = gr.Textbox(label="Transcript", interactive=False)
audio_emotion_output = gr.Textbox(label="Emotion from Audio and Text", interactive=False)
visual_emotion_output = gr.Textbox(label="Emotion from Video", interactive=False)
# For uploaded video
submit_button_file.click(analyze_video, inputs=video_file, outputs=[transcript_output, audio_emotion_output, visual_emotion_output])
# For YouTube streaming (no downloading)
submit_button_url.click(analyze_video, inputs=video_url, outputs=[transcript_output, audio_emotion_output, visual_emotion_output])
if __name__ == "__main__":
iface.launch()