|
import os |
|
import subprocess |
|
import gradio as gr |
|
import whisper |
|
import yt_dlp |
|
import torch |
|
import numpy as np |
|
from moviepy.editor import VideoFileClip |
|
from transformers import AutoModelForAudioClassification, AutoFeatureExtractor |
|
from transformers import AutoTokenizer, AutoModelForSequenceClassification |
|
from transformers import BlipProcessor, BlipForConditionalGeneration |
|
import cv2 |
|
|
|
|
|
|
|
def download_youtube_video(video_url, output_path): |
|
ydl_opts = { |
|
'format': 'bestvideo+bestaudio', |
|
'outtmpl': os.path.join(output_path, '%(title)s.%(ext)s'), |
|
} |
|
with yt_dlp.YoutubeDL(ydl_opts) as ydl: |
|
ydl.download([video_url]) |
|
video_info = ydl.extract_info(video_url, download=False) |
|
video_title = video_info.get('title', 'video') |
|
return os.path.join(output_path, f"{video_title}.webm") |
|
|
|
def convert_to_mp4(input_path, output_path): |
|
output_file = os.path.join(output_path, 'video.mp4') |
|
command = ['ffmpeg', '-i', input_path, '-c', 'copy', output_file] |
|
subprocess.run(command, check=True) |
|
return output_file |
|
|
|
def extract_audio_from_video(video_path): |
|
video_clip = VideoFileClip(video_path) |
|
audio_output = os.path.join(output_path, 'audio.mp3') |
|
audio_clip = video_clip.audio |
|
audio_clip.write_audiofile(audio_output) |
|
return audio_output |
|
|
|
def convert_mp3_to_wav(mp3_path): |
|
from pydub import AudioSegment |
|
audio = AudioSegment.from_mp3(mp3_path) |
|
wav_output = os.path.join(output_path, 'audio.wav') |
|
audio.export(wav_output, format="wav") |
|
return wav_output |
|
|
|
def process_text(text): |
|
model_name = "cardiffnlp/twitter-roberta-base-emotion" |
|
emotion_labels = ['anger', 'joy', 'optimism', 'sad'] |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
model = AutoModelForSequenceClassification.from_pretrained(model_name) |
|
|
|
inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=512) |
|
with torch.no_grad(): |
|
outputs = model(**inputs) |
|
logits = outputs.logits |
|
|
|
emotion_probs = torch.softmax(logits, dim=-1).squeeze() |
|
predicted_emotion = emotion_labels[torch.argmax(emotion_probs)] |
|
|
|
emotion_dict = {emotion_labels[i]: emotion_probs[i].item() for i in range(len(emotion_labels))} |
|
|
|
return emotion_dict, predicted_emotion |
|
|
|
def preprocess_frame(frame): |
|
frame = cv2.resize(frame, (224, 224)) |
|
pixel_values = caption_processor(images=frame, return_tensors="pt").pixel_values |
|
return pixel_values |
|
|
|
def generate_caption(pixel_values): |
|
caption_ids = caption_model.generate(pixel_values) |
|
caption = caption_processor.batch_decode(caption_ids, skip_special_tokens=True)[0] |
|
return caption |
|
|
|
def predict_emotions(caption): |
|
inputs = emotion_tokenizer(caption, return_tensors='pt', truncation=True, padding=True) |
|
outputs = emotion_model(**inputs) |
|
|
|
emotion_probs = torch.softmax(outputs.logits, dim=1) |
|
|
|
predicted_emotions = {label: prob.item() for label, prob in zip(emotion_labels, emotion_probs[0])} |
|
|
|
return predicted_emotions |
|
|
|
|
|
caption_model_name = "Salesforce/blip-image-captioning-base" |
|
caption_processor = BlipProcessor.from_pretrained(caption_model_name) |
|
caption_model = BlipForConditionalGeneration.from_pretrained(caption_model_name) |
|
|
|
emotion_model_name = "j-hartmann/emotion-english-distilroberta-base" |
|
emotion_tokenizer = AutoTokenizer.from_pretrained(emotion_model_name) |
|
emotion_model = AutoModelForSequenceClassification.from_pretrained(emotion_model_name) |
|
|
|
|
|
def analyze_video(video_url): |
|
|
|
global output_path |
|
output_path = './' |
|
|
|
|
|
video_path = download_youtube_video(video_url, output_path) |
|
|
|
|
|
mp4_path = convert_to_mp4(video_path, output_path) |
|
|
|
|
|
audio_path = extract_audio_from_video(mp4_path) |
|
|
|
|
|
audio_wav_path = convert_mp3_to_wav(audio_path) |
|
|
|
|
|
model_whisper = whisper.load_model("base") |
|
|
|
result_whisper = model_whisper.transcribe(audio_wav_path) |
|
|
|
transcript = result_whisper['text'] |
|
|
|
|
|
emotion_dict_text, predicted_emotion_text = process_text(transcript) |
|
|
|
|
|
|
|
n_frame_interval = 60 |
|
emotion_vectors_video = [] |
|
|
|
|
|
video_capture = cv2.VideoCapture(mp4_path) |
|
total_frames_video = int(video_capture.get(cv2.CAP_PROP_FRAME_COUNT)) |
|
|
|
frame_count_video = 0 |
|
|
|
while video_capture.isOpened(): |
|
ret_video, frame_video = video_capture.read() |
|
|
|
if not ret_video or frame_count_video > total_frames_video: |
|
break |
|
|
|
if frame_count_video % n_frame_interval == 0: |
|
pixel_values_video = preprocess_frame(frame_video) |
|
caption_video = generate_caption(pixel_values_video) |
|
predicted_emotions_video, _ = predict_emotions(caption_video) |
|
|
|
|
|
emotion_vectors_video.append(np.array(list(predicted_emotions_video.values()))) |
|
|
|
frame_count_video += 1 |
|
|
|
video_capture.release() |
|
|
|
|
|
average_emotion_vector_video = np.mean(emotion_vectors_video, axis=0) |
|
|
|
|
|
combined_emotion_vector_final= np.concatenate((np.array(list(emotion_dict_text.values())), average_emotion_vector_video)) |
|
|
|
final_most_predicted_index= np.argmax(combined_emotion_vector_final) |
|
|
|
final_most_predicted_emotion= list(emotion_dict_text.keys())[final_most_predicted_index] |
|
|
|
return transcript, predicted_emotion_text, final_most_predicted_emotion |
|
|
|
|
|
|
|
iface= gr.Interface(fn=analyze_video, |
|
inputs=gr.Textbox(label="YouTube Video URL"), |
|
outputs=["text", "text", "text"], |
|
title="Multimodal Emotion Recognition", |
|
description="Enter a YouTube Video URL to analyze emotions from both audio and visual content.") |
|
|
|
|
|
if __name__ == "__main__": |
|
iface.launch() |