import os import subprocess import gradio as gr import whisper import yt_dlp import torch import numpy as np from moviepy.editor import VideoFileClip from transformers import AutoModelForAudioClassification, AutoFeatureExtractor from transformers import AutoTokenizer, AutoModelForSequenceClassification from transformers import BlipProcessor, BlipForConditionalGeneration import cv2 def extract_audio_from_video(video_path): video_clip = VideoFileClip(video_path) audio_output = os.path.join('./', 'audio.mp3') audio_clip = video_clip.audio audio_clip.write_audiofile(audio_output) return audio_output def convert_mp3_to_wav(mp3_path): from pydub import AudioSegment audio = AudioSegment.from_mp3(mp3_path) wav_output = os.path.join('./', 'audio.wav') audio.export(wav_output, format="wav") return wav_output def process_text(text): model_name = "cardiffnlp/twitter-roberta-base-emotion" emotion_labels = ['anger', 'joy', 'optimism', 'sad'] tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSequenceClassification.from_pretrained(model_name) inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=512) with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits emotion_probs = torch.softmax(logits, dim=-1).squeeze() predicted_emotion = emotion_labels[torch.argmax(emotion_probs)] emotion_dict = {emotion_labels[i]: emotion_probs[i].item() for i in range(len(emotion_labels))} return emotion_dict, predicted_emotion def preprocess_frame(frame): frame = cv2.resize(frame, (224, 224)) pixel_values = caption_processor(images=frame, return_tensors="pt").pixel_values return pixel_values def generate_caption(pixel_values): caption_ids = caption_model.generate(pixel_values) caption = caption_processor.batch_decode(caption_ids, skip_special_tokens=True)[0] return caption def predict_emotions(caption): inputs = emotion_tokenizer(caption, return_tensors='pt', truncation=True, padding=True) outputs = emotion_model(**inputs) emotion_probs = torch.softmax(outputs.logits, dim=1) predicted_emotions = {label: prob.item() for label, prob in zip(emotion_labels, emotion_probs[0])} return predicted_emotions # Models for image captioning and emotion analysis caption_model_name = "Salesforce/blip-image-captioning-base" caption_processor = BlipProcessor.from_pretrained(caption_model_name) caption_model = BlipForConditionalGeneration.from_pretrained(caption_model_name) emotion_model_name = "j-hartmann/emotion-english-distilroberta-base" emotion_tokenizer = AutoTokenizer.from_pretrained(emotion_model_name) emotion_model = AutoModelForSequenceClassification.from_pretrained(emotion_model_name) def analyze_video(video=None, video_url=None): if video is not None: # If a video is uploaded, process the uploaded file video_path = video elif video_url: # For streaming YouTube video, just embed the link (assuming it's embedded using Gradio) video_path = None # If the video is uploaded, extract audio if video_path: audio_path = extract_audio_from_video(video_path) audio_wav_path = convert_mp3_to_wav(audio_path) model_whisper = whisper.load_model("base") result_whisper = model_whisper.transcribe(audio_wav_path) transcript = result_whisper['text'] emotion_dict_text, predicted_emotion_text = process_text(transcript) # Frame-wise emotion detection from the video n_frame_interval = 60 emotion_vectors_video = [] video_capture = cv2.VideoCapture(video_path) total_frames_video = int(video_capture.get(cv2.CAP_PROP_FRAME_COUNT)) frame_count_video = 0 while video_capture.isOpened(): ret_video, frame_video = video_capture.read() if not ret_video or frame_count_video > total_frames_video: break if frame_count_video % n_frame_interval == 0: pixel_values_video = preprocess_frame(frame_video) caption_video = generate_caption(pixel_values_video) predicted_emotions_video = predict_emotions(caption_video) emotion_vectors_video.append(np.array(list(predicted_emotions_video.values()))) frame_count_video += 1 video_capture.release() average_emotion_vector_video = np.mean(emotion_vectors_video, axis=0) combined_emotion_vector_final = np.concatenate((np.array(list(emotion_dict_text.values())), average_emotion_vector_video)) final_most_predicted_index = np.argmax(combined_emotion_vector_final) final_most_predicted_emotion = list(emotion_dict_text.keys())[final_most_predicted_index] return transcript, predicted_emotion_text, final_most_predicted_emotion else: # For streaming, return an empty analysis or handle the embedding in the Gradio UI return None, "Streaming video detected (no processing).", "N/A" # Gradio Interface with gr.Blocks() as iface: gr.Markdown("# 🎥 Multimodal Emotion Recognition\nUpload a video or input a YouTube video URL to analyze emotions from audio and video frames.") with gr.Tabs(): with gr.TabItem("Upload Video"): video_file = gr.File(label="Upload Video File", file_types=["video"]) submit_button_file = gr.Button("Analyze Uploaded Video") with gr.TabItem("YouTube URL"): video_url = gr.Textbox(label="YouTube Video URL", placeholder="Enter YouTube video URL") submit_button_url = gr.Button("Analyze YouTube Video") with gr.Row(): transcript_output = gr.Textbox(label="Transcript", interactive=False) audio_emotion_output = gr.Textbox(label="Emotion from Audio and Text", interactive=False) visual_emotion_output = gr.Textbox(label="Emotion from Video", interactive=False) # For uploaded video submit_button_file.click(analyze_video, inputs=video_file, outputs=[transcript_output, audio_emotion_output, visual_emotion_output]) # For YouTube streaming (no downloading) submit_button_url.click(analyze_video, inputs=video_url, outputs=[transcript_output, audio_emotion_output, visual_emotion_output]) if __name__ == "__main__": iface.launch()