Spaces:
Running
Running
File size: 2,077 Bytes
75baf07 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
mport gradio as gr
from gliner import GLiNER
from langchain_community.vectorstores import Qdrant
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_qdrant import QdrantVectorStore
from langchain_groq import ChatGroq
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain_core.runnables import RunnableMap
from langchain_core.output_parsers import StrOutputParser
from langchain.memory import ChatMessageHistory
import re
from datasets import load_dataset
from langchain.schema import Document
import os
# Initialize once
gliner_model = GLiNER.from_pretrained("urchade/gliner_medium-v2.1")
embedding_model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
# Qdrant setup
doc_store = QdrantVectorStore.from_existing_collection(
embedding=embedding_model,
collection_name="customer_support_docsv1",
url=os.getenv("QDRANT_URL"),
api_key=os.getenv("QDRANT_API_KEY"),
)
retriever = doc_store.as_retriever(search_type="similarity", search_kwargs={"k": 1})
llm = ChatGroq(api_key=os.getenv("GROQ_API_KEY"), model="meta-llama/llama-4-scout-17b-16e-instruct")
chat_prompt = ChatPromptTemplate.from_messages([
("system", "You are an intelligent assistant. Use context and chat history to answer."),
MessagesPlaceholder("chat_history"),
("human", "{query}")
])
rag_chain = RunnableMap({
"context": lambda x: retriever.invoke(x["query"]),
"query": lambda x: x["query"],
"chat_history": lambda x: x["chat_history"]
}) | chat_prompt | llm | StrOutputParser()
# Shared memory
memory = ChatMessageHistory()
# Gradio handler
def chat_fn(message, history_list):
# Use LangChain-style history for context
response = rag_chain.invoke({
"query": message,
"chat_history": memory.messages
})
# Append new messages to the LangChain memory
memory.add_user_message(message)
memory.add_ai_message(response)
return response
chatbot = gr.ChatInterface(fn=chat_fn, title="🛠️ Customer Support Chatbot")
chatbot.launch() |