Spaces:
Sleeping
Sleeping
Commit
·
c231584
1
Parent(s):
d2c645a
commit
Browse files
app.py
CHANGED
@@ -28,7 +28,8 @@ pose = mp_pose.Pose(
|
|
28 |
min_detection_confidence=0.5,
|
29 |
min_tracking_confidence=0.5
|
30 |
)
|
31 |
-
|
|
|
32 |
def calculate_angle(a, b, c):
|
33 |
ab = (b[0] - a[0], b[1] - a[1])
|
34 |
bc = (c[0] - b[0], c[1] - b[1])
|
@@ -37,12 +38,59 @@ def calculate_angle(a, b, c):
|
|
37 |
magnitude_ab = math.sqrt(ab[0]**2 + ab[1]**2)
|
38 |
magnitude_bc = math.sqrt(bc[0]**2 + bc[1]**2)
|
39 |
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
angle_degrees = math.degrees(angle_radians)
|
42 |
|
43 |
return angle_degrees
|
44 |
|
45 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
def process_frame(image):
|
47 |
h, w, _ = image.shape
|
48 |
|
@@ -56,59 +104,60 @@ def process_frame(image):
|
|
56 |
image = cv2.cvtColor(image_rgb, cv2.COLOR_RGB2BGR)
|
57 |
|
58 |
if results.pose_landmarks:
|
59 |
-
# Get landmarks
|
60 |
right_shoulder = results.pose_landmarks.landmark[mp_pose.PoseLandmark.RIGHT_SHOULDER]
|
61 |
right_hip = results.pose_landmarks.landmark[mp_pose.PoseLandmark.RIGHT_HIP]
|
62 |
right_ear = results.pose_landmarks.landmark[mp_pose.PoseLandmark.RIGHT_EAR]
|
63 |
|
64 |
-
# Convert to pixel coordinates
|
65 |
cx_rs, cy_rs = int(right_shoulder.x * w), int(right_shoulder.y * h)
|
66 |
cx_rh, cy_rh = int(right_hip.x * w), int(right_hip.y * h)
|
67 |
cx_re, cy_re = int(right_ear.x * w), int(right_ear.y * h)
|
68 |
|
69 |
-
# Create
|
70 |
offset = 60
|
71 |
upper_shoulder = (cx_rs, max(0, cy_rs - offset))
|
72 |
upper_hip = (cx_rh, max(0, cy_rh - offset))
|
73 |
|
74 |
-
# Draw landmarks
|
75 |
cv2.circle(image, upper_shoulder, 5, (0, 255, 0), -1)
|
76 |
cv2.circle(image, upper_hip, 5, (0, 255, 0), -1)
|
77 |
|
78 |
-
# Draw lines
|
79 |
cv2.line(image, (cx_rh, cy_rh), (cx_rs, cy_rs), (255, 0, 255), 2) # Hip to shoulder
|
80 |
cv2.line(image, (cx_rs, cy_rs), (cx_re, cy_re), (255, 255, 0), 2) # Shoulder to ear
|
81 |
cv2.line(image, (cx_rh, cy_rh), upper_hip, (0, 165, 255), 2) # Hip to upper hip
|
82 |
cv2.line(image, (cx_rs, cy_rs), upper_shoulder, (0, 255, 255), 2) # Shoulder to upper shoulder
|
83 |
|
84 |
-
# Calculate angles
|
85 |
angle_hip = calculate_angle(upper_hip, (cx_rh, cy_rh), (cx_rs, cy_rs))
|
86 |
angle_neck = calculate_angle((cx_rs, cy_rs), (cx_re, cy_re), upper_shoulder)
|
87 |
|
88 |
-
#
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
|
|
|
|
|
|
93 |
|
94 |
-
# Display
|
95 |
-
cv2.putText(image, f"
|
96 |
-
cv2.FONT_HERSHEY_SIMPLEX, 0.6,
|
97 |
-
cv2.putText(image, f"Neck Angle: {angle_neck:.1f} ({neck_posture})", (10, 90),
|
98 |
-
cv2.FONT_HERSHEY_SIMPLEX, 0.6, neck_color, 2)
|
99 |
|
100 |
return image
|
101 |
|
102 |
-
# API Route to receive an image and return processed image
|
103 |
@app.post("/upload")
|
104 |
async def upload_image(file: UploadFile = File(...)):
|
105 |
contents = await file.read()
|
106 |
image = Image.open(BytesIO(contents))
|
107 |
image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
|
108 |
|
109 |
-
# Process the image
|
110 |
processed_image = process_frame(image)
|
111 |
|
112 |
-
# Encode processed image to return
|
113 |
_, buffer = cv2.imencode(".jpg", processed_image)
|
114 |
-
return Response(content=buffer.tobytes(), media_type="image/jpeg")
|
|
|
28 |
min_detection_confidence=0.5,
|
29 |
min_tracking_confidence=0.5
|
30 |
)
|
31 |
+
|
32 |
+
# Function to calculate angles between three points
|
33 |
def calculate_angle(a, b, c):
|
34 |
ab = (b[0] - a[0], b[1] - a[1])
|
35 |
bc = (c[0] - b[0], c[1] - b[1])
|
|
|
38 |
magnitude_ab = math.sqrt(ab[0]**2 + ab[1]**2)
|
39 |
magnitude_bc = math.sqrt(bc[0]**2 + bc[1]**2)
|
40 |
|
41 |
+
# To avoid division by zero
|
42 |
+
if magnitude_ab * magnitude_bc == 0:
|
43 |
+
return 0.0
|
44 |
+
|
45 |
+
# Clamp the cosine value to the [-1, 1] range to avoid numerical errors
|
46 |
+
cosine_angle = max(min(dot_product / (magnitude_ab * magnitude_bc), 1), -1)
|
47 |
+
angle_radians = math.acos(cosine_angle)
|
48 |
angle_degrees = math.degrees(angle_radians)
|
49 |
|
50 |
return angle_degrees
|
51 |
|
52 |
+
# Function to calculate a simplified REBA score based on trunk (hip) and neck angles.
|
53 |
+
def calculate_reba(trunk_angle, neck_angle):
|
54 |
+
"""
|
55 |
+
This is a simplified approach:
|
56 |
+
- For the trunk (approximated by the hip angle), a nearly upright posture (angle >= 160°) is scored as 1,
|
57 |
+
a moderately bent posture (angle between 140° and 160°) is scored as 2, and a severely bent posture (<140°) is scored as 3.
|
58 |
+
- Similarly for the neck angle.
|
59 |
+
- The REBA score is the sum of these scores.
|
60 |
+
- Finally, we define a risk level based on the total score.
|
61 |
+
"""
|
62 |
+
# Determine trunk score (using the hip angle)
|
63 |
+
if trunk_angle >= 160:
|
64 |
+
trunk_score = 1
|
65 |
+
elif trunk_angle >= 140:
|
66 |
+
trunk_score = 2
|
67 |
+
else:
|
68 |
+
trunk_score = 3
|
69 |
+
|
70 |
+
# Determine neck score
|
71 |
+
if neck_angle >= 150:
|
72 |
+
neck_score = 1
|
73 |
+
elif neck_angle >= 130:
|
74 |
+
neck_score = 2
|
75 |
+
else:
|
76 |
+
neck_score = 3
|
77 |
+
|
78 |
+
# Simplified REBA group A score (normally REBA also considers legs, arms, load, etc.)
|
79 |
+
reba_score = trunk_score + neck_score
|
80 |
+
|
81 |
+
# Define risk levels based on the score
|
82 |
+
if reba_score <= 2:
|
83 |
+
risk = "Negligible"
|
84 |
+
elif reba_score <= 4:
|
85 |
+
risk = "Low"
|
86 |
+
elif reba_score <= 6:
|
87 |
+
risk = "Medium"
|
88 |
+
else:
|
89 |
+
risk = "High"
|
90 |
+
|
91 |
+
return reba_score, risk
|
92 |
+
|
93 |
+
# Process image with Mediapipe Pose Estimation and analyze posture using REBA score
|
94 |
def process_frame(image):
|
95 |
h, w, _ = image.shape
|
96 |
|
|
|
104 |
image = cv2.cvtColor(image_rgb, cv2.COLOR_RGB2BGR)
|
105 |
|
106 |
if results.pose_landmarks:
|
107 |
+
# Get key landmarks from the right side
|
108 |
right_shoulder = results.pose_landmarks.landmark[mp_pose.PoseLandmark.RIGHT_SHOULDER]
|
109 |
right_hip = results.pose_landmarks.landmark[mp_pose.PoseLandmark.RIGHT_HIP]
|
110 |
right_ear = results.pose_landmarks.landmark[mp_pose.PoseLandmark.RIGHT_EAR]
|
111 |
|
112 |
+
# Convert normalized coordinates to pixel coordinates
|
113 |
cx_rs, cy_rs = int(right_shoulder.x * w), int(right_shoulder.y * h)
|
114 |
cx_rh, cy_rh = int(right_hip.x * w), int(right_hip.y * h)
|
115 |
cx_re, cy_re = int(right_ear.x * w), int(right_ear.y * h)
|
116 |
|
117 |
+
# Create reference points by applying an offset (helps approximate vertical)
|
118 |
offset = 60
|
119 |
upper_shoulder = (cx_rs, max(0, cy_rs - offset))
|
120 |
upper_hip = (cx_rh, max(0, cy_rh - offset))
|
121 |
|
122 |
+
# Draw reference landmarks on the image
|
123 |
cv2.circle(image, upper_shoulder, 5, (0, 255, 0), -1)
|
124 |
cv2.circle(image, upper_hip, 5, (0, 255, 0), -1)
|
125 |
|
126 |
+
# Draw lines connecting key points
|
127 |
cv2.line(image, (cx_rh, cy_rh), (cx_rs, cy_rs), (255, 0, 255), 2) # Hip to shoulder
|
128 |
cv2.line(image, (cx_rs, cy_rs), (cx_re, cy_re), (255, 255, 0), 2) # Shoulder to ear
|
129 |
cv2.line(image, (cx_rh, cy_rh), upper_hip, (0, 165, 255), 2) # Hip to upper hip
|
130 |
cv2.line(image, (cx_rs, cy_rs), upper_shoulder, (0, 255, 255), 2) # Shoulder to upper shoulder
|
131 |
|
132 |
+
# Calculate angles using the defined reference points
|
133 |
angle_hip = calculate_angle(upper_hip, (cx_rh, cy_rh), (cx_rs, cy_rs))
|
134 |
angle_neck = calculate_angle((cx_rs, cy_rs), (cx_re, cy_re), upper_shoulder)
|
135 |
|
136 |
+
# Compute the simplified REBA score and corresponding risk level
|
137 |
+
reba_score, risk = calculate_reba(angle_hip, angle_neck)
|
138 |
+
|
139 |
+
# Display the calculated angles on the image
|
140 |
+
cv2.putText(image, f"Hip Angle: {angle_hip:.1f}", (10, 60),
|
141 |
+
cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 0, 255), 2)
|
142 |
+
cv2.putText(image, f"Neck Angle: {angle_neck:.1f}", (10, 90),
|
143 |
+
cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 255, 0), 2)
|
144 |
|
145 |
+
# Display the simplified REBA score and risk level on the image
|
146 |
+
cv2.putText(image, f"REBA Score: {reba_score} ({risk})", (10, 120),
|
147 |
+
cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 0, 255), 2)
|
|
|
|
|
148 |
|
149 |
return image
|
150 |
|
151 |
+
# API Route to receive an image and return the processed image with REBA analysis
|
152 |
@app.post("/upload")
|
153 |
async def upload_image(file: UploadFile = File(...)):
|
154 |
contents = await file.read()
|
155 |
image = Image.open(BytesIO(contents))
|
156 |
image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
|
157 |
|
158 |
+
# Process the image (the processing function now includes REBA score analysis)
|
159 |
processed_image = process_frame(image)
|
160 |
|
161 |
+
# Encode the processed image to return it as JPEG
|
162 |
_, buffer = cv2.imencode(".jpg", processed_image)
|
163 |
+
return Response(content=buffer.tobytes(), media_type="image/jpeg")
|