Commit
·
9889643
1
Parent(s):
7671fea
add files
Browse files- Dockerfile +13 -0
- app.py +201 -0
- chromadb/chroma.sqlite3 +0 -0
- requirements.txt +0 -0
Dockerfile
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
FROM python:3.12
|
| 2 |
+
|
| 3 |
+
RUN useradd -m -u 1000 user
|
| 4 |
+
USER user
|
| 5 |
+
ENV PATH="/home/user/.local/bin:$PATH"
|
| 6 |
+
|
| 7 |
+
WORKDIR /app
|
| 8 |
+
|
| 9 |
+
COPY --chown=user ./requirements.txt requirements.txt
|
| 10 |
+
RUN pip install --no-cache-dir --upgrade -r requirements.txt
|
| 11 |
+
|
| 12 |
+
COPY --chown=user . /app
|
| 13 |
+
CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "7860"]
|
app.py
ADDED
|
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from fastapi import FastAPI
|
| 2 |
+
from pydantic import BaseModel
|
| 3 |
+
import pandas as pd
|
| 4 |
+
from sentence_transformers import SentenceTransformer
|
| 5 |
+
import chromadb
|
| 6 |
+
from fastapi.middleware.cors import CORSMiddleware
|
| 7 |
+
import uvicorn
|
| 8 |
+
import requests
|
| 9 |
+
# Define FastAPI app
|
| 10 |
+
app = FastAPI()
|
| 11 |
+
|
| 12 |
+
origins = [
|
| 13 |
+
"http://localhost:5173",
|
| 14 |
+
"localhost:5173"
|
| 15 |
+
]
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
app.add_middleware(
|
| 19 |
+
CORSMiddleware,
|
| 20 |
+
allow_origins=origins,
|
| 21 |
+
allow_credentials=True,
|
| 22 |
+
allow_methods=["*"],
|
| 23 |
+
allow_headers=["*"]
|
| 24 |
+
)
|
| 25 |
+
|
| 26 |
+
# Load the dataset and model at startup
|
| 27 |
+
df = pd.read_csv("hf://datasets/QuyenAnhDE/Diseases_Symptoms/Diseases_Symptoms.csv")
|
| 28 |
+
df['Symptoms'] = df['Symptoms'].str.split(',')
|
| 29 |
+
df['Symptoms'] = df['Symptoms'].apply(lambda x: [s.strip() for s in x])
|
| 30 |
+
|
| 31 |
+
model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
|
| 32 |
+
client = chromadb.PersistentClient(path='./chromadb')
|
| 33 |
+
collection = client.get_or_create_collection(name="symptomsvector")
|
| 34 |
+
|
| 35 |
+
class SymptomQuery(BaseModel):
|
| 36 |
+
symptom: str
|
| 37 |
+
|
| 38 |
+
# Endpoint to handle symptom query and return matching symptoms
|
| 39 |
+
@app.post("/find_matching_symptoms")
|
| 40 |
+
def find_matching_symptoms(query: SymptomQuery):
|
| 41 |
+
# Generate embedding for the symptom query
|
| 42 |
+
symptoms = query.symptom.split(',')
|
| 43 |
+
all_results = []
|
| 44 |
+
|
| 45 |
+
for symptom in symptoms:
|
| 46 |
+
symptom = symptom.strip()
|
| 47 |
+
query_embedding = model.encode([symptom])
|
| 48 |
+
|
| 49 |
+
# Perform similarity search in ChromaDB
|
| 50 |
+
results = collection.query(
|
| 51 |
+
query_embeddings=query_embedding.tolist(),
|
| 52 |
+
n_results=3 # Return top 3 similar symptoms for each symptom
|
| 53 |
+
)
|
| 54 |
+
all_results.extend(results['documents'][0])
|
| 55 |
+
|
| 56 |
+
# Remove duplicates while preserving order
|
| 57 |
+
matching_symptoms = list(dict.fromkeys(all_results))
|
| 58 |
+
|
| 59 |
+
return {"matching_symptoms": matching_symptoms}
|
| 60 |
+
|
| 61 |
+
# Endpoint to handle symptom query and return matching diseases
|
| 62 |
+
@app.post("/find_matching_diseases")
|
| 63 |
+
def find_matching_diseases(query: SymptomQuery):
|
| 64 |
+
# Generate embedding for the symptom query
|
| 65 |
+
query_embedding = model.encode([query.symptom])
|
| 66 |
+
|
| 67 |
+
# Perform similarity search in ChromaDB
|
| 68 |
+
results = collection.query(
|
| 69 |
+
query_embeddings=query_embedding.tolist(),
|
| 70 |
+
n_results=5 # Return top 5 similar symptoms
|
| 71 |
+
)
|
| 72 |
+
|
| 73 |
+
# Extract matching symptoms
|
| 74 |
+
matching_symptoms = results['documents'][0]
|
| 75 |
+
|
| 76 |
+
# Filter diseases that match the symptoms
|
| 77 |
+
matching_diseases = df[df['Symptoms'].apply(lambda x: any(s in matching_symptoms for s in x))]
|
| 78 |
+
|
| 79 |
+
return {"matching_diseases": matching_diseases['Name'].tolist()}
|
| 80 |
+
|
| 81 |
+
# Endpoint to handle symptom query and return detailed disease list
|
| 82 |
+
@app.post("/find_disease_list")
|
| 83 |
+
def find_disease_list(query: SymptomQuery):
|
| 84 |
+
# Generate embedding for the symptom query
|
| 85 |
+
query_embedding = model.encode([query.symptom])
|
| 86 |
+
|
| 87 |
+
# Perform similarity search in ChromaDB
|
| 88 |
+
results = collection.query(
|
| 89 |
+
query_embeddings=query_embedding.tolist(),
|
| 90 |
+
n_results=5 # Return top 5 similar symptoms
|
| 91 |
+
)
|
| 92 |
+
|
| 93 |
+
# Extract matching symptoms
|
| 94 |
+
matching_symptoms = results['documents'][0]
|
| 95 |
+
|
| 96 |
+
# Filter diseases that match the symptoms
|
| 97 |
+
matching_diseases = df[df['Symptoms'].apply(lambda x: any(s in matching_symptoms for s in x))]
|
| 98 |
+
|
| 99 |
+
# Create a list of disease information
|
| 100 |
+
disease_list = []
|
| 101 |
+
symptoms_list = []
|
| 102 |
+
unique_symptoms_list = []
|
| 103 |
+
for _, row in matching_diseases.iterrows():
|
| 104 |
+
disease_info = {
|
| 105 |
+
'Disease': row['Name'],
|
| 106 |
+
'Symptoms': row['Symptoms'],
|
| 107 |
+
'Treatments': row['Treatments']
|
| 108 |
+
}
|
| 109 |
+
disease_list.append(disease_info)
|
| 110 |
+
symptoms_info = row['Symptoms']
|
| 111 |
+
symptoms_list.append(symptoms_info)
|
| 112 |
+
for i in range(len(symptoms_list)):
|
| 113 |
+
for j in range(len(symptoms_list[i])):
|
| 114 |
+
if symptoms_list[i][j] not in unique_symptoms_list:
|
| 115 |
+
unique_symptoms_list.append(symptoms_list[i][j])
|
| 116 |
+
return {"disease_list": disease_list, "unique_symptoms_list": unique_symptoms_list}
|
| 117 |
+
|
| 118 |
+
class SelectedSymptomsQuery(BaseModel):
|
| 119 |
+
selected_symptoms: list
|
| 120 |
+
|
| 121 |
+
@app.post("/find_disease")
|
| 122 |
+
def find_disease(query: SelectedSymptomsQuery):
|
| 123 |
+
selected_symptoms = query.selected_symptoms
|
| 124 |
+
# Filter diseases that match at least one of the selected symptoms
|
| 125 |
+
matching_diseases = df[df['Symptoms'].apply(lambda x: any(s in x for s in selected_symptoms))]
|
| 126 |
+
|
| 127 |
+
# Sort diseases by the number of matching symptoms in descending order
|
| 128 |
+
matching_diseases['match_count'] = matching_diseases['Symptoms'].apply(lambda x: sum(s in selected_symptoms for s in x))
|
| 129 |
+
matching_diseases = matching_diseases.sort_values(by='match_count', ascending=False)
|
| 130 |
+
|
| 131 |
+
# Create a list of disease information
|
| 132 |
+
disease_list = []
|
| 133 |
+
max_match_count_disease = None
|
| 134 |
+
max_match_count = -1
|
| 135 |
+
|
| 136 |
+
for _, row in matching_diseases.iterrows():
|
| 137 |
+
disease_info = {
|
| 138 |
+
'Disease': row['Name'],
|
| 139 |
+
'Symptoms': row['Symptoms'],
|
| 140 |
+
'Treatments': row['Treatments'],
|
| 141 |
+
'MatchCount': row['match_count']
|
| 142 |
+
}
|
| 143 |
+
disease_list.append(disease_info)
|
| 144 |
+
|
| 145 |
+
# Check if this disease has the maximum match count
|
| 146 |
+
if row['match_count'] > max_match_count:
|
| 147 |
+
max_match_count = row['match_count']
|
| 148 |
+
max_match_count_disease = disease_info
|
| 149 |
+
|
| 150 |
+
return {"disease_list": disease_list, "max_match_count_disease": max_match_count_disease}
|
| 151 |
+
class DiseaseListQuery(BaseModel):
|
| 152 |
+
disease_list: list
|
| 153 |
+
|
| 154 |
+
class DiseaseDetail(BaseModel):
|
| 155 |
+
Disease: str
|
| 156 |
+
Symptoms: list
|
| 157 |
+
Treatments: str
|
| 158 |
+
MatchCount: int
|
| 159 |
+
|
| 160 |
+
@app.post("/pass2llm")
|
| 161 |
+
def pass2llm(query: DiseaseDetail):
|
| 162 |
+
# Prepare the data to be sent to the LLM API
|
| 163 |
+
disease_list_details = query
|
| 164 |
+
|
| 165 |
+
# Make the API request to the Ngrok endpoint to get the public URL
|
| 166 |
+
headers = {
|
| 167 |
+
"Authorization": "Bearer 2npJaJjnLBj1RGPcGf0QiyAAJHJ_5qqtw2divkpoAipqN9WLG",
|
| 168 |
+
"Ngrok-Version": "2"
|
| 169 |
+
}
|
| 170 |
+
response = requests.get("https://api.ngrok.com/endpoints", headers=headers)
|
| 171 |
+
|
| 172 |
+
# Check if the request was successful
|
| 173 |
+
if response.status_code == 200:
|
| 174 |
+
llm_api_response = response.json()
|
| 175 |
+
public_url = llm_api_response['endpoints'][0]['public_url']
|
| 176 |
+
|
| 177 |
+
# Prepare the prompt with the disease list details
|
| 178 |
+
prompt = f"Here is a list of diseases and their details: {disease_list_details}. Please generate a summary."
|
| 179 |
+
|
| 180 |
+
# Make the request to the LLM API
|
| 181 |
+
llm_headers = {
|
| 182 |
+
"Content-Type": "application/json"
|
| 183 |
+
}
|
| 184 |
+
llm_payload = {
|
| 185 |
+
"model": "llama3",
|
| 186 |
+
"prompt": prompt,
|
| 187 |
+
"stream": False
|
| 188 |
+
}
|
| 189 |
+
llm_response = requests.post(f"{public_url}/api/generate", headers=llm_headers, json=llm_payload)
|
| 190 |
+
|
| 191 |
+
# Check if the request to the LLM API was successful
|
| 192 |
+
if llm_response.status_code == 200:
|
| 193 |
+
llm_response_json = llm_response.json()
|
| 194 |
+
return {"message": "Successfully passed to LLM!", "llm_response": llm_response_json.get("response")}
|
| 195 |
+
else:
|
| 196 |
+
return {"message": "Failed to get response from LLM!", "error": llm_response.text}
|
| 197 |
+
else:
|
| 198 |
+
return {"message": "Failed to get public URL from Ngrok!", "error": response.text}
|
| 199 |
+
# To run the FastAPI app with Uvicorn
|
| 200 |
+
# if __name__ == "__main__":
|
| 201 |
+
# uvicorn.run(app, host="0.0.0.0", port=8000)
|
chromadb/chroma.sqlite3
ADDED
|
Binary file (168 kB). View file
|
|
|
requirements.txt
ADDED
|
Binary file (5.88 kB). View file
|
|
|