import gradio as gr from ctransformers import AutoModelForCausalLM # Load the TinyLlama model with ctransformers llm = AutoModelForCausalLM.from_pretrained( "tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf", model_file="tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf", model_type="tinyllama", max_new_tokens=512 ) # Define a function to generate text based on user input def generate_text(prompt): # Generate response from the model return llm(prompt) # Set up Gradio interface interface = gr.Interface( fn=generate_text, # Function to call inputs="text", # Text input for prompt outputs="text", # Text output for response title="TinyLlama GGUF Text Generator", description="Enter a prompt and see how TinyLlama responds." ) # Launch the app interface.launch()